:hager

General points 2
Degrees of protection 3
Regulations: boxes and cabinets 6
Guide for housing 8
HVa- and LV-metered installations 34
Selection of a duct system 45
Diameter and cross-section of wires 46
Properties of materials 47
Regulatory approvals and certifications 48
Approvals 49

\square \square

Regulations and general points

Regulations

In most countries, electrical installations must comply with more than one set of regulations issued by the national authorities or by recognised private bodies. It is essential to take into account these local constraints before starting the design. These regulations may be based on national standards derived from IEC 60364: Low-voltage electrical installations.

Electrical standards

This guide is based on relevant IEC standards, in particular IEC 60364, the UTE (French Electrical Commission), and
French standards NFC15-100 and NFC15-500 (ed. 2003). Currently, the safety principles of IEC 60364, 61140, 60479 and 61201 are the basis of most electrical standards in the world.

Calculation parameters linked to electrical standards

For standards other than CENELEC, some parameters needed for calculations are not always defined precisely. In these cases, we take into consideration CENELEC documents (HD384) R064-001, R064-003 or the IEC 60364 standard, where the necessary information is given.

General Points

Low-voltage equipment must be selected according to three main parameters:

- The characteristics of the network.
- The installation rules.
- The environment the circuit being considered will be in

The properties of the network

These are:

- Their source: transformer (type and power rating).
- The voltage: DC or single-phase or polyphase AC.
- The frequency: e.g. 50 Hz .
- The short-circuit current characteristics at different parts of the circuit.

Installation rules

The installation rules consist of defining the properties of the various switching or protective devices in order to ensure continuity of normal operation, while adhering to the conditions for the protection of individuals and property.

The rules take into account the characteristics of the circuit, the device being powered, how the cables are installed and the environment. They are consolidated in standard NF C 15-100.

"Protection" technical file

This allows all parts of the low-voltage installation to be calculated, applying the obligations imposed by standard NF C 15-100. It ends with an additional section on the protection of individuals, which is achieved using products that use residual-current circuit breakers (RCCB).

The IEC 60-529 standard describes a system for classifying the degrees of protection provided by low-voltage electrical equipment enclosures up to 1000 V AC and 1500 V DC for two conditions and given using two numbers:

1) The first number (from 0 to 6) represents protection of individuals against access to hazardous parts and protection of equipment against the ingress of solid foreign objects.

First number: Protection against solid objects

IP	Designation	
0		No protection.
1	$\left.\begin{array}{l} 1_{1}^{4} \\ 1 \\ 1 \\ 1 \end{array}\right]$	Protected against solid objects over $\varnothing 50 \mathrm{~mm}$ (e.g. back of hand).
2		Protected against solid objects over $\varnothing 12 \mathrm{~mm}$ (e.g. fingers). Required minimum protection against direct contact.
3		Protected against solid objects over $\varnothing 2.5 \mathrm{~mm}$ (e.g. wires, tools, etc.).
4		Protected against solid objects over $\varnothing 1 \mathrm{~mm}$ (e.g. small wires, small tools, etc.).
5		Protected against dust (no harmful deposits).
6		Fully protected against dust.

- IK code: Protection against mechanical shocks

Defined by standard EN 50-102 (new designation). It comprises a set of numbers (from 00 to 10) that indicate protection against mechanical impacts.

IK code	Impact energy
00	Not protected
01	0.15 joules
02	0.2 joules
03	0.35 joules
04	0.5 joules
05	0.7 joules
06	1 joules
07	2 joules
08	5 joules
09	10 joules
10	20 joules

2) The second number (from 0 to 8) indicates the degree of protection provided by the enclosure with respect to harmful ingress of water.

The degree of protection against these two conditions is designated by an IP Code.

Second number: Protection against liquids

IP	Designation	
0		No protection.
1		Protected against vertically falling drops of water (condensation).
2		Protected against falling drops of water up to 15° from the vertical.
3		Protected against splashes of water up to 60° from the vertical.
4		Protected against splashes of water from all directions.
5		Protected against water jets from all directions.
6		Protected against powerful water jets.
7		Protected against immersion.
8		Protected against long periods of immersion under pressure.

Additional letter (optional)

Protection of persons against contact with hazardous parts.

	Designation
A	Protected against access with back of hand.
B	Protected against access with finger.
C	Protected against access with a tool with $-\varnothing 2.5 \mathrm{~mm}$.
D	Protected against access with a tool with $-\varnothing 1 \mathrm{~mm}$.

Additional letter (optional)
Specific information about the equipment.

	Designation
H	High-voltage equipment.
M	Movement during the water test.
S	Stationary during the water test.
W	Weather conditions.

The French practical guide UTE C 15-103 contains tables showing the minimum IP and IK degrees of protection required for electrical equipment, according to the locations in which they are installed.
For certain locations, marked with an *, the UTE C 15-103 guide indicates higher IP and IK ratings for unusual uses.

Location or premises (cont.)	IP	IK
Threshing floors*	50	07
Sheepfolds (enclosed)	35	07
Laundries	24	07
Butchers	30	10
Distillation rooms	23	07
Storehouses (wine)	23	07
Yards	35	07
Stables	35	07
Poultry farms	35	07
Fertiliser (storage)*	50	07
Cowsheds	35	07
Haylofts*	50	07
Fodder (storage)*	50	07
Manure pits	24	07
Granaries, barns*	50	07
Straw (storage)*	50	07
Pigsties	35	07
Henhouses	35	07
Greenhouses	23	07
Silos*	50	07
Milking sheds	35	07
Miscellaneous facilities		
Fountain pools	37	02
Building sites	44	08
Fairground sites	33	08
Swimming pools Zone 0	28	02
Zone 1	25	02
Zone ${ }^{*}$	22	02
Marina berths	44	08
Roads, yards, gardens, exteriors*	34	07
Wastewater treatment (sites)*	24	07-08
Saunas	34	02
Camping and caravanning sites	34	07
Thermodynamic facilities, air-conditioned rooms and cold rooms		
from 0 m to 1.10 m	25	07
from 1.10 m to 2 m	24	07
Height above ground \quad beneath the evaporator or	21	07
water drainage tube		
Temperatures $<10^{\circ} \mathrm{C} \quad 10 \mathrm{~cm}$ below	23	07
Temperatures $<10^{\circ} \mathrm{C}$	23	07
Compressors		
- monoblock placed outside or on a terrace	$\begin{aligned} & 21 \\ & 24 \end{aligned}$	08
Commercial premises (shops and side rooms)		
Arms manufacturing (storage, workshop)	30	08
Launderette	24	07
Butchers		
- shops	24	07
- cold rooms 5-10 ${ }^{\circ} \mathrm{C}$	23	07
Bakeries - Patisseries (bakery outlets)*	50	07
Coffee-roasting shops - Cafes	21	02
Coal, wood, heating oil	20	08
Delicatessen (production site)	24	07
Confectionery (production site)	20	02
Shoe-repair shops	20	02
Dairy/cheese shops	24	02
Pharmacies - Paint (storage)	30	07
Furniture makers*	50	07
Exhibition halls - Art Galleries*	20	02
Florists	24	07
Fur shops	20	07
Fruit - Vegetable shops	24	07
Seed shops*	50	07
Bookshops - Stationers	20	02
Car/bike mechanics and accessories shops	20	08
Shipping shops	20	08
Furniture shops (antiques, second hand)	20	07
Mirror (manufacturers)	20	07
Wallpaper (stockroom)	20	07
Perfume (stockroom)	20	02
Pharmacy (stockroom)	20	02
Photography (laboratory)	23	02
Plumbers (stockroom)	20	08
Fishmongers	25	07
Dry-cleaners	23	02
Hardware shop	20	07
Locksmiths*	20	07
Spirit, wine and alcohol shops	20	07
Upholsterers (carding)*	50	07
Tailors - Clothing shops (stockroom)	20	02
Animal groomers, veterinary clinics	35	07

The French practical guide UTE C 15-103 contains tables showing the minimum IP and IK degrees of protection required for electrical equipment, according to the locations in which they are installed.
For certain locations, marked with an *, the UTE C 15-103 guide indicates higher IP and IK ratings for unusual uses.

Industrial premises (cont.)	IP	IK
Slaughterhouses*	55	08
Batteries (production)	33	07
Acids (production and storage)	33	07
Alcohols (production and storage)	33	07
Aluminium (production and storage)*	51	08
Animals (farming, fattening, sale)	45	07
Asphalt, bitumen (storage)*	53	07
Beating, carding wool*	50	08
Laundries*	24	07
Woodworking*	50	08
Butchers	24	07
Bakeries	50	07
Breweries	24	07
Brickyards*	53	08
Rubber (working and processing)*	54	07
Metal carbides (production and storage)*	51	07
Quarries*	55	08
Cardboard (production)	33	07
Cartridge factories*	53	08
Celluloid (production of objects)	30	08
Cellulose (production)	34	08
Bottling lines	35	08
Coal (storage)*	53	08
Cured meat**	24	07
Metal workshop	30	08
Lime (kilns)*	50	08
Cloth (storage)	30	07
Chlorine (production and storage)	33	07
Chrome plating	33	07
Cement works*	50	08
Coke works*	53	08
Glue (production)	33	07
Liquid fuels (storage)*	31	08
Oil (processing)*	51	07
Leather (production and storage)	31	08
Copper mineral treatment	31	08
Pickling*	54	08
Detergent (production and storage)*	53	07
Distilleries	33	07
Electrolysis	23	08
Ink (production)	31	07
Fertiliser (production and storage)*	53	07
Explosives (production and storage)*	55	08
Iron (production and storage)*	51	08
Mills*	50	07
Pelt (beating)*	50	07
Cheese dairy	25	07
Gas (plants and storage)*	31	08
Tar (treatments)	33	07
Seeds*	50	07
Metal engraving	33	07
Oil (extraction)	31	07
Hydrocarbons (production)*	33	08
Printing works	20	08
Dairies	25	07
Laundrettes, public washhouses	25	07
Liquids (production)	21	07
Halogenated liquid (use of)	21	08
Flammable liquids (storage and workshops where they are used)	21	08
Machine (rooms)	20	08
Magnesium (production, working and storage)	31	08
Plastics (production)*	51	08
Woodwork*	50	08
Metal (treating)*	31	08
Combustion engine (testing)	30	08
Munitions (storage)	33	08
Nickel (processing minerals)	33	08
Household waste (processing)*	54	07
Paper (storage)	31	07
Paper (production)	33	07
Perfume (production and storage)	31	07
Pulp (preparation)	34	07
Paint (production and storage)	33	08
Lime (grinding and storage)*	50	07
Explosives factories*	55	08
Chemical products (production)*	30	08
Oil refineries*	34	07
Meat salting	33	07
Soap (production)	31	07
Sawmills*	50	08
Locksmiths	30	08
Hair and bristle (preparation of)*	50	08
Soda (production and storage)	33	07
Sulphur (processing)*	51	07
Spirits (storage) ${ }^{*}$	33	07
Sugar refineries*	55	07
Tanneries	35	07
Dyers	35	07
Woven fabrics (production)*	51	08
Varnish (production, application)	33	08
Glassworks	33	08
Zinc (working with)	31	08

Employee-access areas

Disconnection of energy sources

At the source of any installation and the source of every circuit there must be a device allowing the installation or circuit to be disconnected from its source.
This function may be provided by a protective device, control device, or emergency switching device that is able to disconnect the installation or circuit.
It must be made impossible to inadvertently reconnect the installation or circuit.

Emergency switching device

In any final circuit, an emergency switching device must be installed that is easily recognisable and can be easily and readily accessed, allowing the power to be cut to all active conductors
This device may control multiple final circuits.
Earth electrodes and protective conductors
Protective conductor connections must be made individually to the main earth terminal such that if one protective connection becomes separated from the main earth terminal, all of the other protective connections will remain connected.

Public-access buildings (PAB)

Installation of electrical cabinets or boxes in rooms or passageways that are accessible to the public

Examples of enclosure fire resistance
Refer to the IEC 60 695-2-1
set of series of standards.

"Normal" boards

Any "normal" board must be installed in one of the following:

- In an electrical room.
- In a room or passageway that is not accessible to the public.
- In a room or passageway that is accessible to the public, with the exception of protected stairs (fire escapes), provided that one of the provisions below is adhered to (see table).

Power installed	Implementation of fuse board
$P \leq 100 \mathrm{kVA}$	In an electrical cabinet or box that meets one of the following conditions: - Metal enclosure - Enclosure that passes the $750^{\circ} \mathrm{C}$ glow-wire test (defined in standard IEC 60695-2-1), if each device meets the same condition
$P>100 \mathrm{kVA}$	In an metal electrical cabinet or box if each device passes the $750^{\circ} \mathrm{C}$ glow-wire test (defined in standard IEC 60695-2-1) Or in an enclosure with brick walls, fitted with a fire- resistant doorset rated for 30 minutes and, if neces- sary, with ventilation exclusively via baffles

Key locking:

The controls for control or protective devices, when they are located less than 2.5 metres from the ground, must require a key or tool, where this key or tool must allow either the device to be controlled or the cabinet or box in which it is located to be opened.

Protection against indirect contact may be provided:

- Either via double insulation or increased insulation of the live parts.
- Or via additional insulation added to the main insulation when the equipment is installed.

Selection of boxes - cabinets - compliance measures

Include a locking system for each disconnection device or on the main switching device, or provide each box with a key-operated lock.

Include a main disconnection switch (readily, easily and quickly accessible, etc.) fitted with a system to lock it in the off position.
Solution 1: Lockable switch.
Solution 2: Contactor + emergency shut-off button with key lock.
Solution 3: Lockable switch + removable control (for a lockable cabinet).

Include a earthing strip such that each conductor is connected to and individual connection point.

Fire resistance of the enclosure of electrical cabinets, boxes and accessories

Electrical cabinets and boxes	Glow-wire test result
mini gamma	$850^{\circ} \mathrm{C}$
gamma 13 and 18	$850^{\circ} \mathrm{C}$
golf	$850^{\circ} \mathrm{C}$
nodeis	$850^{\circ} \mathrm{C}$
vega surface mounting	$750^{\circ} \mathrm{C}$
vega flush mounting	$850^{\circ} \mathrm{C}$
VL	$850^{\circ} \mathrm{C}$
gala	$750^{\circ} \mathrm{C}$
volta	$850^{\circ} \mathrm{C}$
vega D	$750^{\circ} \mathrm{C}$
vega D flush mounting	$850^{\circ} \mathrm{C}$
vector IP55 and vector security	$850^{\circ} \mathrm{C}$
FW	$850^{\circ} \mathrm{C}$

Accessories	Glow-wire test result
Control block	$960^{\circ} \mathrm{C}$
Control panels	$960^{\circ} \mathrm{C}$
Door (gamma 13 and 18)	$850^{\circ} \mathrm{C}$

Selection of boxes - cabinets with key lock

Boxes	Cabinets
gamma 13 and 18 - vega - volta - vega D vector IP 55 orion plus polyester - orion plus metal	quadro

Class II boxes - cabinets by construction:

Boxes	Cabinets
vega - volta - vega D vector IP 55 orion plus polyester	FW

Class II boxes - cabinets by installation:

(When the main circuit breaker is not a residual-current circuit breaker)

- gamma boxes: by putting a back plate and insulating caps over the mounting screws for the box.

How to use

(According to the French practical guide UTE C 15-105 guide of June 2003).

In this type of circuit, protection of wiring and individuals is provided using the diagram below to determine the following:

- The cross-section of conductors.
- The choice of overload protective devices
- The choice of short-circuit protective devices.
- The choice of devices for protection of individuals.

This diagram allows you, throughout the installation and by following the order of (1) to (7), to:

- Identify risks.
- Analyse these risks.
- Find a solution.

Surrounding area and method of installation

Protection against overloads is ensured when the following conditions are fulfilled.

K \times Iprotection	he protective current	tection depe	the particula	stallation:			
$l z \geq f$	Type of system	Single-phase	Three-phase without neutral	Three-phase with neutral			
	Degree of harmonic distortion	any	any	$H 3 \leq 33 \%$	H3 > 33\%		
	Single or multi-core cable	any	any	any	Multi-core cable Sphase < Sneutral 1 calc. 1 calc. for the AND for the phase neutral		Multi-core cable Sphase = Sneutral
	$\begin{aligned} & \downarrow \downarrow \\ & \downarrow \downarrow \\ & \downarrow \downarrow \end{aligned}$		$\downarrow \downarrow$	$\downarrow \downarrow$			$\downarrow \downarrow$
			$\downarrow \downarrow$	$\downarrow \downarrow$			$\downarrow \downarrow$
			$\downarrow \downarrow$	$\downarrow \downarrow$			$\downarrow \downarrow$
Ib (*) \leq Ith \leq Iz	Adjustable thermaltrip circuit breaker	Iprotection = Ith, current setting				Iprotection = Ibneutral Design current for the neutral conductor	
$\left.\mathbf{l b}{ }^{*}\right) \leq \ln \leq \mathbf{I z}$	Non-adjustable circuit breaker or fuse	Iprotection $=$ In, protection rating					

Iz: Current-carrying capacity in the conductor to be protected page 22.
lb : Design current for the circuit $\left(^{*}\right)$ or I_{A} maximum current during the stabilisation time for a lighting unit.
K : Factor determined by the type and rating of the protective device (see table S1 below).
f: Correction factor.
This factor relates to the installation conditions and area surrounding the circuit to be calculated.
Each condition, if involved, adds a coefficient (f1 to f12).

Table S1

In rating	Circuit breaker	gG fuse
In $<16 \mathrm{~A}$	1	1.31
$\ln \geq 16 \mathrm{~A}$	1	1.1

Coefficient f1: Type of system

if unbalanced system
f1
 0.84

or if third and multiples-of-three current harmonic percentages are greater than 15\%

Coefficient f2: Risk of explosion
if risk of explosion
f2
 0.85

Table S2

Coefficient f3: Ambient temperature if ambient temperature is not $30^{\circ} \mathrm{C}$
f3

Coefficient not used for underground installation

Table S3

Temperature in ${ }^{\circ} \mathrm{C}$			
	Insulation around conductor (rubber) A or HO5R... A or HO7R...	Polyvinyl chloride (PVC) A or HO5V... A or HO7V...	Cross-linked polyethylene (PEX), butyl, eth- ylene propylene (EPR) U 1000R...
	1.29	1.22	1.15
15	1.22	1.17	1.12
20	1.15	1.12	1.08
25	1.07	1.06	1.04
35	0.93	0.94	0.96
40	0.82	0.87	0.91
45	0.71	0.79	0.87
50	0.58	0.71	0.82
55		0.61	0.76
60		0.5	0.71
65			0.65
70			0.58
75			0.50
80			0.41

Ith current (x\|n)	Types of circuit breakers																							
	x160		x160							x250					h250LSI			h630LSI			h1000LSI		h1600LSI	
	18 kA		25/40 kA							40 kA					50 kA			50/70 kA			50/70 kA		50/70 kA	
	Nominal current In																							
	125	160	25	40	63	80	100	125	160	100	125	160	200	250	40	125	250	250	400	630	800	1000	1250	1600
0.4															16	50	100	100	160	252	320	400	500	640
0.5															20	63	125	125	200	315	400	500	625	800
0.63	79	101	16	25	40	50	63	79	101	63	79	101	126	158	25	79	158	158	252	397	504	630	788	1008
0.8	100	128	20	32	50	64	80	100	128	80	100	128	160	200	32	100	200	200	320	504	640	800	1000	1280
0.85															34	106	213	213	340	536	680	850	1063	1360
0.9															36	113	225	225	360	567	720	900	1125	1440
0.95															38	119	238	238	380	599	760	950	1188	1520
1	125	160	25	40	63	80	100	125	160	100	125	160	200	250	40	125	250	250	400	630	800	1000	1250	1600

771.314.2, 771.465, 771.524, 771.533

- The minimum cross-sections required for conductors (see table below) are determined according to the installed power ratings and taking into account the limits of points of use powered by each final circuit.
- An installation must be able to have a sufficient number of points of use to meet the normal requirements of users, i.e. at least those indicated in the table.
- All circuits must be protected by a protective device that is either a fuse or a circuit breaker, and for which the maximum rated current is equal to the value indicated in the table.

Type of circuit	Minimum crosssection of copper conductors in mm^{2}	Maximum rated current \ln (in A) circuit fuse breaker		Equipment - Installation conditions	
16A socket	2.5	20	16	- Maximum of 8 sockets per circuit.	The minimum number of 16 A sockets must be: - 3 per bedroom. - 1 per $4 m^{2}$ span with a minimum of 5 in living rooms of up to $40 \mathrm{~m}^{2}$. For living rooms larger than $40 \mathrm{~m}^{2}$, the number will be determined in agreement with the project manager and/or user, with a minimum of 10 sockets. - 6 non-specialised sockets in the kitchen, of which 4 are placed above worktops. These sockets
	1.5	16	Not permitted	- Maximum of 5 sockets per circuit	are not to be installed above sinks or hobs (except at 1.80 m from the ground, above the hobs, provided for the cooker hood). When it is an open-plan kitchen and living room, the area of the living room is considered as being equal to the total area of the room, minus $8 \mathrm{~m}^{2}$. - At least 1 in other rooms $>4 \mathrm{~m}^{2}$ and passageways, with the exception of bathrooms and detached buildings (garden sheds, garages, etc.).
Socket with a switch	1.5	16	10	```-1 control switch for a maximum of two 2 sockets (located in the same room). -1 remote switch, contactor or other similar device may control more than two sockets.```	
Specialised socket or circuit	2.5	20	16	- At least 3 circuits (2 circuits for F1 accommodation) intended to power appliances such as washing machines, dishwashers, oven, freezers and tumble dryers. - 1 circuit must be planned for each additional large household appliance.	
MEV	1.5	2	Not permitted	Specialised circuit. The protection for the MEV can be increased up to 16A (special cases). The MEV circuit must include a shut-off device. The dedicated circuit breaker provides this function.	
Servo-control circuit, pilot wire, energy manager systems	1.5	2	Not permitted		

Diameter of conductors, protection against overloads, minimum equipment

Type of circuit	Minimum crosssection of copper	Maximum rated current \ln (in A)		Equipment - Installation conditions
	mm ${ }^{2}$	circuit breaker	fuse	
	6 for singlephase 2.5 for threephase	$\begin{aligned} & 32 \\ & 20 \end{aligned}$	$\begin{aligned} & 32 \\ & 16 \end{aligned}$	- 1 specialised circuit must be provided (junction box or socket).
Free-standing oven	2.5	20	16	- specialised circuit (junction box or socket).
Lighting	1.5	16	10	- Maximum of 8 lighting points per circuit. - Minimum of 2 circuits in accommodation $>35 \mathrm{~m}^{2}$. The lighting point can be created either: - Via a ceiling rose. - Via one or more wall lights. - Via one or more controlled sockets. a) In bedrooms, living rooms and kitchens, when the ceiling is tiled, the ceiling lighting point is mandatory. It may be supplemented with wall lights or one or more controlled sockets. b) In other rooms, it must be on the ceiling or as wall lights. This provision does not apply to detached buildings (garden sheds, garages, etc.).
Outdoor lighting	1.5	16	10	- 1 lighting point must be provided per main entrance or service entrance that connects directly to the accommodation. - 1 specialised circuit for outdoor lighting for detached buildings. - It is recommended to provide a lighting point near garage doors.
Roller shutters	1.5	16	10	- Specialised circuit.
Water heaters	2.5	20	16	- Specialised circuit.
Convector heaters, heating panels (230 V) $-2250 \mathrm{~W}$ - 3500 W - 4500 W - 5750 W - 7250 W	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 2.5 \\ & 2.5 \\ & 4 \\ & 4 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & l \\ & 16 \\ & / \\ & 20 \\ & / \\ & 25 \\ & / \\ & 32 \end{aligned}$	$\begin{aligned} & 10 \\ & 1 \\ & 16 \\ & 1 \\ & 20 \\ & 1 \\ & 25 \\ & / \end{aligned}$	- Specialised circuit. - Number of devices limited by total power rating.
Underfloor heating (230 V) $-1700 \mathrm{~W}$ - 3400 W - 4200 W - 5400 W - 7500 W	$\begin{aligned} & 1.5 \\ & 2.5 \\ & 4 \\ & 6 \\ & 10 \end{aligned}$	$\begin{aligned} & 16 \\ & 25 \\ & 32 \\ & 40 \\ & 50 \end{aligned}$	Not permitted	- Only circuit breakers may be used for protection against overloads.

Other specialised circuits are to be created, for example for each of the following applications when they are planned:

- Boiler
- Air conditioner
- Pool
- Automation functions (domestic, alarms, etc.).
- Distribution board
- Bathroom heating unit
- Heat pump
- Heating unit

Sockets

\square Socket properties

- All sockets must have shutters (child protection).
- When in use, they must not come out of their frame, exposing the conductor terminals or power cables. The mounting screws must ensure this is the case.
- When renovating, when existing enclosures do not allow this, clickin systems may still be used.

\square Minimum heights for sockets according to the French standard

The heights of 5 cm and 12 cm given below apply for any method of installation and any SC external factors (presence of water).

\square Installation restrictions

- Counting of number of sockets

When sockets are fitted in a single enclosure, they are counted as follows:

For countries other than France, please see the country-specific regulations/specifications for the locations of sockets.

Number of sockets per enclosure	1	2	3	4	>4
Number of sockets counted in 1 circuit	1	1	2	2	3

- Number of lighting points

The number of lighting points powered by a single circuit is limited to 8 . For spotlights or lighting strips, each 300 VA counts as one lighting point.

771.411.3.2

- Protection against indirect contact is provided by bonding (main potential equalisation connection and earthing) combined with automatic cutting of the power supply.
- In France, installations powered by a public distribution network are created as a TT system.
- In TT systems, the protective devices against indirect contact are residual-current circuit breakers.
- The impedance of the earth electrode (RA), to which metal exposed conductive parts in an installation are connected, must be at most equal to 100 V .
$R A \leq \frac{U L}{1 \Delta n}$

safety voltage limit (50 volts)
nominal sensitivity of the residual-current circuit breaker at the start of the installation (in amperes)
for $\left\{\begin{array}{l}U L: 50 \mathrm{~V} \\ I \Delta n=500 \mathrm{~mA} \quad R A \leq 100 \Omega\end{array}\right.$
- Maximum value of the earth electrode according to the sensitivity of the RCCB at the start of the installation.

Maximum I $\Delta \mathrm{n}$		Maximum RA (in ohms)
Average sensitivity	500 mA	100
	300 mA	167
High sensitivity	100 mA	500
	$\leq 30 \mathrm{~mA}$	500

- Residual-current circuit breakers with adjustable sensitivities must not be used if the protection of individuals is not provided on all settings.
- Automatic resetting functions are not permitted for RCCBs in domestic settings (531.2.1.7).
- Residual-current circuit breakers with adjustable sensitivities must not be used if the protection of individuals is not provided on all settings.
- Automatic resetting functions are not permitted for RCCBs in domestic settings (531.2.1.7).

771.411.3.3

- All circuits must have and earth conductor.

For class II fitted electrical equipment, the earth conductor must not be connected.

Emergency circuit switching

771.463

- The main control and protective device installed at the source of the installation (main circuit breaker) may provide the emergency circuit switching functions if it is located within living quarters.

If it is located in a garage or annex, the must be direct access between this room and the living quarters.
If this is not the case, another directly operated device enabling the power to be cut must be placed within the living quarters (e.g. switch or circuit breaker).
771.558.1.6

- The control for the switching device must be at a height of between 0.90 and 1.80 m from the finished floor. This height is limited to 1.30 m in premises for the handicapped or elderly.
- All circuits must have, at their source, an disconnection device on all active conductors, including the neutral conductor.
- Main circuit breakers, cut-out switches and miniature circuit breakers that bear the NF label fulfil this requirement.

Disconnection

771.462

Additional protection against direct contact

415.1.

- The use of an RCCB with a sensitivity of at most 30 mA is recognised as an additional protective measure:
- In the event of the failure of other protective measures against direct contact (notably for wear or deterioration of flexible cables supplying movable devices).
- In the event of carelessness by users.

771.531.2.3.2

- All circuits in the installation must be protected by RCCBs with a maximum sensitivity of 30 mA except:
- Those powered via an isolation transformer.
- A surge arrestor circuit installed at the source of the installation (this circuit must be protected by a selective or time delay RCCB that passes the 5 kA test for a $8 / 20 \mu$ s current wave).
- For a distribution circuit, the 30 mA RCCB(s) are installed:
- At the source of the circuit.
- Or on the distribution board.
- The protection of external circuits supplying installations not attached to the building must be separate from the protection of internal circuits.
- According to the desired continuity for each application, protection using 30 mA RCCBs can be either:
- A single circuit breaker for a group of circuits.
- Or an individual circuit breaker for a specialised or general circuit (washing machine, dishwasher, tumble dryer, etc.).
- For heating:
- In electrical appliances with a pilot wire, all of the heating circuits, including the pilot wire, are placed downstream of a single 30 mA RCCB.
- In underfloor heating (radiant heating), the protection must be provided via a 30 mA RCCB and rated for the power of the heating elements of at most:
- 13 kW (400 V).
- 7.5 kW (230 V).
- The number, type and rating for the RCCBs are given in the table.

The table for selecting RCCBs is valid for:

- A single-phase branch with power rating of $\leq 18 \mathrm{kVA}$, with or without electric heating.
- A three-phase branch.
- If using RCCBs, their type and number must be at least that indicated in the table, with their rating being adapted to the circuit(s) to be protected.
- Automatic resetting functions are not permitted for highly sensitive RCCBs (531.2.1.7).

Area of living quarters	$\mathbf{3 0} \mathrm{mA}$ RCCBs: minimum requirements		
	Number	Rating	Type
Area $\leq 35 \mathrm{~m}^{2}$	1	25	AAC
	1	40 A	$\mathrm{~A}^{(1)}$
$35 \mathrm{~m}^{2}<$ area $\leq 100 \mathrm{~m}^{2}$	2	$40 \mathrm{~A}^{(2)}$	AC
	1	40 A	$\mathrm{~A}^{(1)}$
Area $>100 \mathrm{~m}^{2}$	3	$40 \mathrm{~A}^{(2)}$	AC
	1	40 A	$\mathrm{~A}^{(1)}$

${ }^{(1)}$ The type A 40 A RCCB must protect the following circuits:

- The specialised cooker or hob circuit.
- The specialised washing machine circuit.
- Optionally, two non-specialised circuits (lighting or sockets).

If this RCCB is used to protect one or two additional specialised circuits, the rating must be 63 A .
${ }^{(2)}$ The type AC 40 A RCCB must be replaced by a type AC 63 A RCCB when heating and electric water heater circuits, whose power rating is over 8 kVA , are placed downstream of a single RCCB.

\square Type A RCCBs

Depending on the technology used, certain equipment, when faulty, can produce a DC component.
Type A RCCBs are designed to detect these types of fault currents, which are not detected by type AC RCCBs.

\square Type HI RCCBs (high immunity)

Products with "increased immunity" reduce the risk of false triggers when protecting equipment that can cause interference (e.g. microcomputers).

It is advisable to also protect the freezer circuit with a type HI RCCB in order to mitigate the health consequences that can arise from consecutive false triggers (or to power it directly via an isolation transformer).

Total selectivity between RCCBs

535.4.3.1

- Total selectivity allows the cutting of power to the whole installation in the event of an insulation fault on a final circuit to be avoided.
- Total selectivity is only provided between the 30 mA RCCBs and the main circuit breaker if the latter is a selective circuit breaker.

Total selectivity

701.3

- The standard defines four zones, $0,1,2$ and 3 , which cover and surround baths and shower trays.
It also includes measures restricting the properties of devices installed (class II, SELV, etc.) and the associated protective devices.

Devices authorised in the different zones

701.53

Key:
SELV source < $12 \mathrm{~V} \sim$ or 30 V ... to be installed outside of zones 0,1 and 2

回 Class II equipment
In bathrooms, sockets installed in the floor are not permitted.

Other equipment (devices) whose use is permitted

701.55

- Zones 0 and 1: Only devices intended for use in the bath, powered with SELV limited to $12 \mathrm{~V} \sim$ or 30 V are permitted = the source being installed outside of zones 0,1 and 2.
- Zone 2: Only light fixtures, heating units and other appliances, provided that this equipment is class II and is protected by a RCCB with a sensitivity of at most 30 mA .
- Zone 3: Appliances are permitted, provided that they are:
- Powered individually by an isolation transformer (§413.3 NF C 15-100).
- Powered by SELV (§414 NF C 15-100).
- Or protected by an RCCB with a sensitivity of at most 30 mA .
- Underfloor electrical heating elements other than those powered by SELV are not permitted below zone 1 or in walls around this zone. Underfloor heating elements may be installed below zones 2 and 3 and outside of the zones, provided that the are covered with a wire mesh that is earthed or if it has a metal enclosure that is earthed, connected to a potential equalisation connection as defined in §701.415.2. NF C 15-100.

Appliances:

Key:
Source via isolation transformer

Special case for water heaters

701.55.2

- Storage water heaters must be installed in zone 3 or outside of the zones.
If the dimensions of the bathroom do not allow it to be placed in zone 3 or outside of the zones, these units can be installed:
- In zone 2.
- In zone 1, if it is a horizontal model and is placed as high up as possible.
The storage water heater is powered via a junction box that is accessible and complies with the IP requirements for the area in which it is installed
The connection between the water heater and the junction box must be as short as possible.
- Instantaneous water heaters may be installed in zones 1 and 2 if they meet the following conditions:
- Protected via a RCCB with a sensitivity of at most 30 mA .
- It is powered directly by a cable, without the insertion of a junction box.

Degree of protection for installed equipment by zone
Table S2

Zones				
Degree of protection	IPX7	IPX4(**)	IPX4(*)	IPX1 (*)
Wiring	Powered by SELV limited to $12 \mathrm{~V} \sim$ or $30 ~ V$	II (a)	II (a)	II

II Permitted if class II or equivalent to class II.
(a) Limited to those needed to supply devices located in this zone.
(*) IPX5 if this zone will be sprayed with water for cleaning purposes * (e.g. public baths).
(**) IPX5 if this zone will be sprayed with water for cleaning purposes (e.g. public baths and showers with horizontal jets).

Space below the bath

701.320 .2

- The space below the bath or shower and their sides is similar to zone 3 if it is sealed and accessible via a hatch intended for this purpose that can only be opened using a tool.
- Otherwise, the rules for zone 1 apply to this space.
- In both cases, the IPX4 degree of protection is the minimum requirement.

Coefficient f4: Method of installation

Table S4 below gives, according to the method of installation and type of cable or conductor, the following information:

- Method of installation number (1 to 74) for the correction factor in the following tables, when it is needed.
- Reference method (B to F) for the current-carrying capacity and sections of tables S13A and S13B.
- Coefficient f 4 if indicated

Table S4

No.	Description	Reference method		f4
1	Conduits embedded in heat-insulating walls with: - Insulated conductors - Multi-core cables	B B		$\begin{aligned} & 0.77 \\ & 0.70 \end{aligned}$
3 3A	Surface-mounted conduits with: - Insulated conductors - Single- or multi-core cables	B B		0.90
4 4A	Surface-mounted shaped conduits with: - Insulated conductors - Single- or multi-core cables	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$		0.90
5 5A	Conduits embedded in walls with: - Insulated conductors - Single- or multi-core cables	B B		0.90
$\begin{aligned} & 11 \\ & 11 \mathrm{~A} \\ & 12 \end{aligned}$	Single- or multi-core cables with or without a sheath: - Wall mounted - Ceiling mounted - On solid cable trays	C C C		0.95
13	- On horizontal or vertical perforated cable trays	Multicore cable E	Singlecore cable F	-
$\begin{aligned} & 14 \\ & 16 \end{aligned}$	- On hooks or welded wire-mesh - On cable ladders	E E	$\begin{aligned} & F \\ & F \end{aligned}$	
17	Single- or multi-core cables hanging on a suspended cable, or self-supporting cables	E	F	-
18	Conductors that are bare or isolated on insulators	C		1.21
21	Single- or multi-core cables in airspaces	B		0.95
$\begin{aligned} & 22 \\ & 22 A \end{aligned}$	Conduits in airspaces with: - Insulated conductors - Single- or multi-core cables	B B		$\begin{aligned} & 0.95 \\ & 0.865 \end{aligned}$
$\begin{aligned} & 23 \\ & 23 A \end{aligned}$	Shaped conduits in airspaces with: - Insulated conductors - Single- or multi-core cables	B		$\begin{aligned} & 0.95 \\ & 0.865 \end{aligned}$
24 $24 A$	Shaped conduits embedded in the building with: - Insulated conductors - Single- or multi-core cables	B		$\begin{aligned} & 0.95 \\ & 0.865 \end{aligned}$

No.	Description	Reference method	f4
25	Single- or multi-core cables: - In the space between the ceiling and the false ceiling - Installed on non-removable suspended false ceiling	B	0.95
$\begin{aligned} & 31 \\ & 31 \mathrm{~A} \end{aligned}$	Horizontal wall-mounted cable duct with: - Insulated conductors - Single- or multi-core cables	B B	0.90
$\begin{aligned} & 32 \\ & 32 A \end{aligned}$	Vertical wall-mounted cable duct with: - Insulated conductors - Single- or multi-core cables	B B	0.90
$\begin{aligned} & 33 \\ & 33 A \end{aligned}$	Cable ducts embedded in floors with: - Insulated conductors - Single- or multi-core cables	B B	0.90
$\begin{aligned} & 34 \\ & 34 A \end{aligned}$	Suspended cable ducts with: - Insulated conductors - Single- or multi-core cables	B B	0.90
41	Horizontal or vertical Insulated conductors in conduits or multi-core cables in sealed wire channels	B	0.95
42	Insulated conductors in conduits in ventilated wire channels	B	-
43	Single- or multi-core cables in open or ventilated wire channels	B	-
61	Single- or multi-core cables in buried conduits, cable ducts or shaped conduits	D	0.80
62	Buried single- or multi-core cables without additional mechanical protection	D	-
63	Buried single- or multi-core cables with additional mechanical protection	D	-
71	Insulated conductors in wooden skirting boards or moulding	B	-
73	Insulated conductors in conduits in frames (doors or chimneys)	B	
73A	Multi-core cables in frames (doors or chimneys)	B	0.90
74	Insulated conductors in conduits in window frames	B	
74A	Multi-core cables in window frames	B	0.90
81	Cables laid under water	according to study	

Values used for the example on page 21

Coefficient $\mathbf{f 5}$: Installation beneath conduits and joined
conduits according to the number of conduits:

- In the air (tab. S5A).
- Embedded in the concrete (tab. S5B).

If installing beneath conduits and joined conduits

Coefficient f6 if NOT installed underground: Group of circuits or multi-core cables in a single layer

If group of circuits for a single layer

f6 \qquad

Coefficient $\mathbf{~ 7} 7$ if NOT installed underground: Group of circuits of multi-core cables in multiple layers (if group of circuits in multiple layers)

f7

Only applicable for method numbers 11 to 17 in table S6

Coefficient f8 if installed UNDERGROUND according to ground temperature

If the ground temperature is not $20^{\circ} \mathrm{C}$
f8
 see table S8

Table S5A

Methods of installation (tab. S4)	No. 1-2-3-3A-4-4A-21-22-22A-23- $23 A-41-42-43$						
No. of conduits arranged vertically	No. of conduits arranged horizontally						
1	1	2	3	4	5	6	
2	0.92	0.94	0.91	0.88	0.87	0.86	
3	0.85	0.81	0.84	0.81	0.80	0.79	
4	0.82	0.78	0.74	0.76	0.75	0.74	
5	0.80	0.76	0.72	0.71	0.70	0.70	
6	0.79	0.75	0.71	0.70	0.69	0.68	

Table S5B

Methods of installation (tab. S4)	No. 5-5A-24-24A					
No. of conduits arranged vertically	No. of conduits arranged horizontally					
	1	2	3	4	5	6
1	1	0.87	0.77	0.72	0.68	0.65
2	0.87	0.71	0.62	0.57	0.53	0.50
3	0.77	0.62	0.53	0.48	0.45	0.42
4	0.72	0.57	0.48	0.44	0.40	0.38
5	0.68	0.53	0.45	0.40	0.37	0.35
6	0.65	0.50	0.42	0.38	0.35	0.32

Table S6

	Num	er	f circ	ts	or mu	ulti-co	re c	les				
(tab. S4)	1	2	3	4	5	6	7	8	9	12	16	20
$\begin{aligned} & 1 \text { to } 5 \mathrm{~A}, \\ & 21 \text { to } 43,71 \end{aligned}$	1.00	0.80	0.70	0.65	0.60	0.55	0.55	0.50	0.50	0.45	0.40	0.40
11, 12	1.00	0.85	0.79	0.75	0.73	0.72	0.72	0.71	0.70	No additional correction factor for more than 9 cables		
11 A	1.00	0.85	0.76	0.72	0.69	0.67	0.66	0.65	0.64			
13	1.00	0.88	0.82	0.77	0.75	0.73	0.73	0.72	0.72			
14, 16, 17	1.00	0.88	0.82	0.80	0.80	0.79	0.79	0.78	0.78			

Table S7

Number of layers	Correction factor
2	0.80
3	0.73
4 or 5	0.70
6 to 8	0.68
9 or more	0.66

Values used for the example on page 19
Table S8

Method of instal- lation (tab. S4)	Temperature in ${ }^{\circ} \mathrm{C}$	Polyvinyl chloride (PVC) A or H05V ... A or H07V	Cross-linked polyethylene (PEX) Butyl, ethylene proplene (EPR) U 1000R ...
61,62,	10	1.10	1.07
63	15	1.05	1.04
	25	0.95	0.96
	30	0.89	0.93
	35	0.84	0.89
	40	0.77	0.85
	45	0.71	0.80
	50	0.63	0.76
	55	0.55	0.71
	60	-	0.65
	70	-	0.60
	75	-	0.53
	80	-	0.46

Coefficient $f 9$ if UNDERGROUND installation in conduits:
Group of underground conduits arranged horizontally or vertically

A single cable per conduit or group of three single-core cables per conduit

Multi-core cables

Single-core cables

Coefficient f 10 if UNDERGROUND installation in conduits:
Group of several circuit or cables in a single conduit

This table is valid for groups of cables with different cross-sections but which have the same maximum allowable temperature

Coefficient f 11 if UNDERGROUND installation directly in the ground: Group of underground conduits arranged horizontally or vertically

Coefficient f12 if UNDERGROUND installation:
Thermal resistivity of soil

Table S9

Method of installation (tab. S4)					
	61				
Number of conduits	Zero (joined conduits)	0.25 m	0.50 m	1.00 m	
2	0.87	0.93	0.95	0.97	
3	0.77	0.87	0.91	0.95	
4	0.72	0.84	0.89	0.94	
5	0.68	0.81	0.87	0.93	
6	0.65	0.79	0.86	0.93	

Table S10

Method of installation (tab. S4)			61								
Number of circuits or multi-core cables											
1	2	3	4	5	6	7	8	9	12	16	20
1	0.71	0.58	0.5	0.45	0.41	0.38	0.35	0.33	0.29	0.25	0.22

Table S11

Method of installation (tab. S4)	62, 63				
Distance (a) between multi-core cables of a group of 3 single-core cables					
Number of cables or circuits	Zero (joined cables)	The diameter of one cable	0.25 m	0.50 m	1.00 m
2	0.76	0.79	0.94	0.88	0.92
3	0.64	0.67	0.74	0.79	0.85
4	0.57	0.61	0.69	0.75	0.82
5	0.52	0.55	0.65	0.71	0.80
6	0.49	0.53	0.60	0.69	0.78

Table S12

Method of installation (tab. S4)		61, 62, 63			
Thermal resistivity of soil (K.m/W)	Correction factor	Factors			
		Humidity	Type of soil		
0.40	1.25	Laid under water	Swamp and sand		
0.50	1.21	Very humid soil			
0.70	1.13	Humid soil "Normal" soil Dry soil		Clay and chalk	
0.85	1.05				
1.00	1				
1.20	0.94	Very dry soil			Ash and cinders
1.50	0.86				
2.00	0.76				
2.50	0.70				
3.00	0.65				

Calculation of cross-sections and selection of protective devices:

See the flowchart below, which also analyses the impact of current harmonics.
The highlighted values are those from the example.

Example:

- A balanced three-phase system with neutral.
- Yellow tariff installations (max. Ik $3=25$ kA).
- No risk of explosion, with an ambient temperature of $40^{\circ} \mathrm{C}$.
- U1000R02V cable, multi-core cable by default (the example also looks at use of single-core cables).
- Installation in perforated cable trays, in two layers of 4 cables.
- Design current of 137 A.
- Protection via main circuit breaker.

Note: If the device being powered is a lighting unit, the design current lb (phase) must be replaced by the I_{A} current value (maximum current during the stabilisation time for a lighting unit) which is used for calculating the protection (June 2005 update of the UTE C15-105 guide).

```
f1: Variable
f2: Not applicable
f3: }
f4: Not applicable
f6: }
f7: 0.80
With K=1
```

Method no. 13, reference E
or

Method no. 13, reference F

Calculation of cross-sections and selection of protective devices

Table S13A: Table of current-carrying capacities Iz (A) if not installed underground

Reference method table S4	Insulation and no. of conductors loaded PVC family: A/H07R... - A/H05R... - A/H07V... - A/H05V... PEX family: U1000R... - H07V2... 2: Single- or two-phase circuit 3 : Three- or four-phase circuit								
B	PVC 3	PVC 2		PEX 3		PEX 2			
C		PVC 3		PVC 2	PEX 3		PEX 2		
E			PVC 3		PVC 2	PEX 3		PEX 2	
F				PVC 3		PVC 2	PEX 3		PEX 2
	1	2	3	4	5	6	7	8	9
Copper in mm^{2}									
1.5	15.5	17.5	18.5	19.5	22	23	24	26	
2.5	21	24	25	27	30	31	33	36	
4	28	32	34	36	40	42	45	49	
6	36	41	43	48	51	54	58	63	
10	50	57	60	63	70	75	80	86	
16	68	76	80	85	94	100	107	115	
25	89	96	101	112	119	127	138	149	161
35	110	119	126	138	147	158	169	185	200
50	134	144	153	168	179	192	207	225	242
70	171	184	196	213	229	246	268	289	310
95	207	223	238	258	278	298	328	352	377
120	239	259	276	299	322	346	382	410	437
150		299	319	344	371	395	441	473	504
185		341	364	392	424	450	506	542	575
240		403	430	461	500	538	599	641	679
300		464	497	530	576	621	693	741	783
400					656	754	825		940
500					749	868	946		1083
630					855	1005	1088		1254
Aluminium in mm^{2}									
2.5	16.5	18.5		21	23	24	26	28	
4	22	25	26	28	31	32	35	38	
6	28	32	33	36	39	42	45	49	
10	39	44	46	49	54	58	62	67	
16	53	59	61	66	73	77	84	91	
25	70	73	78	83	90	97	101	108	121
35	86	90	96	103	112	120	126	135	150
50	104	110	117	125	136	146	154	164	184
70	133	140	150	160	174	187	198	211	237
95	161	170	183	195	211	227	241	257	289
120	186	197	212	226	245	263	280	300	337
150		227	245	261	283	304	324	346	389
185		259	280	298	323	347	371	397	447
240		305	330	352	382	409	439	470	530
300		351	381	406	440	471	508	543	613
400					526	600	663		740
500					610	694	770		856
630					711	808	899		996

Values used for the example on page 19

Table S13B: Table of current-carrying capacities lz (A) if installed underground

Reference method table S4: D

Diameter of conductors (mm^{2})	Insulation and no. of conductors loaded			
	PVC 3	PVC 2	PEX 3	PEX 2
Copper 1.5	26	32	31	37
2.5	34	42	41	48
4	44	54	53	63
6	56	67	66	80
10	74	90	87	104
16	96	116	113	136
25	123	148	144	173
35	147	178	174	208
50	174	211	206	247
70	216	261	254	304
95	256	308	301	360
120	290	351	343	410
150	328	397	387	463
185	367	445	434	518
240	424	514	501	598
300	480	581	565	677
Aluminium 10	57	68		
16	74	88	87	104
25	94	114	111	133
35	114	137	134	160
50	134	161	180	188
70	167	200	197	233
95	197	237	234	275
120	224	270	266	314
150	254	304	300	359
185	285	343	337	398
240	328	396	388	458
300	371	447	440	520

Note:
Use of flexible cables: The current-carrying capacity values given in table S13A apply for flexible cables used in fixed installations. A tolerance of 5% is permitted in the current-carrying capacity values when selecting the cross-section of cables (Art. 523.1.2).

Calculation of cross-section of neutral conductor:

Office circuits, computer circuits, electrical devices, etc. Installed in office buildings, computing centres, banks, trading floors, specialist shops, etc.
Lighting circuits with discharge lamps, including fluorescent tubes Installed in
offices, workshops, supermarkets, etc.

	$0<\mathrm{H} \leq 15 \%$	15\% < H $\leq 33 \%$	H > 33\%
Single-phase circuits	Sneutral $=$ Sphase	Sneutral = Sphase	Sneutral = Sphase
Three-phase $+N$ circuits multi-core cables Sphase $\leq 16 \mathrm{~mm}^{2}$ copper or $25 \mathrm{~mm}^{2}$ aluminium	Sneutral = Sphase	Sneutral = Sphase Factor 0.84	Sphase $=$ Sneutral Sneutral determinant Ibneutral $=1.45 \times$ Ibphase Factor 0.84
Three-phase + N circuits multi-core cables Sphase > $16 \mathrm{~mm}^{2}$ copper or $25 \mathrm{~mm}^{2}$ aluminium	Sneutral = Sphase/2 Protection of neutral permitted	Sneutral = Sphase Factor 0.84	Sphase $=$ Sneutral Sneutral determinant Ibneutral $=1.45 \times$ Ibphase Factor 0.84
Three-phase +N circuits single-core cables Sphase > $16 \mathrm{~mm}^{2}$ copper or $25 \mathrm{~mm}^{2}$ aluminium	Sneutral = Sphase/2 Protection of neutral permitted	Sneutral = Sphase Factor 0.84	Sneutral > Sphase lbneutral $=1.45 \times$ lbphase Factor 0.84

When the H3 percentage has not been determined, the following is recommended:

- Include Sneutral $=$ Sphase with $\mathrm{f} 1=0.84$.
- Protect the neutral conductor.
- Do not use a PEN conductor.

Protection against maximum short-circuit currents

Protection against maximum short-circuit currents is ensured when the following two rules are adhered to:

1 - Adjustment of breaking capacity

$$
\mathrm{Bc} \geq \mathrm{Ik} \quad \mathrm{Ik}=\text { short-circuit current }
$$

Bc: Breaking capacity of short-circuit protective device
Ik: Maximum short-circuit current in location where the device is installed

Method of calculation

Tables C1A and C1B below give the three-phase short-circuit current value at the terminals of a $\mathrm{HVa} / \mathrm{LV}$ transformer according to its power rating, for a three-phase 400 V system and a high-voltage system short-circuit power of 500 MVA.

Table C1A

Oil-immersed transformer (NF C 52 112-1)

Power rating (in kVA)	50	100	160	250	400
Three-phase Ik (in kA)	1.79	3.58	5.71	8.89	14.07
Power rating (in kVA)	630	800	1000		
Three-phase Ik (in kA)	22.03	18.64	23.32		

Table C1B

Air-cooled transformer (NF C 52 115)

Power rating (in kVA)	100	160	250	400	630	
Three-phase Ik (in kA)	2.39	3.82	5.95	9.48	14.77	
Power rating (in kVA)	1000					
Three-phase Ik (in kA)	23.11					

Knowing the three-phase short-circuit current at the source of the circuit (lk upstream), page 25 lets you find the three-phase short-circuit current at the end of given cross-section and length of cable and thus be able to determine the Bc of the protective device placed at this point.

Note:

When the circuit length L is not listed in table C3, use the nearest lower value.

\mathbf{L} (table) $\leq \mathbf{L}$ (circuit)

When the Ik value is not included in table C3, use the nearest higher value.

To calculate the single-phase short-circuit current, multiply the length by 2 and use the the result in the table on page 1.29.

2-Adjustment of break time

$$
\sqrt{\mathrm{t}} \leq \frac{\mathrm{K} \times \mathrm{S}}{\mathrm{Ik}}
$$

The break time of the protective device must not be greater than the time it takes to increase the temperature of conductors to their maximum rated temperatures.
$\mathrm{t}=$ Time in seconds (t max. $<5 \mathrm{~s}$)
$\mathrm{S}=$ Cross-section in mm^{2}
$\mathrm{K}=$ Coefficient based on insulation and type of conductor, according to table C2 opposite
lk in amperes

Note:

This rule is adhered to when a single protective device provides protection against both overloads and short circuits.

Examples

Point A

$\left.\begin{array}{l}-I k_{A}=20 \mathrm{kA} \\ -\mathrm{BC} C_{A} \geq 20 \mathrm{kA}\end{array}\right\}$ i.e. 25 kA for an x 160

Point B

Table C3 page 1.26
$-\mathrm{S}_{\mathrm{ph}}=95 \mathrm{~mm}^{2}$

- Ik upstream = 20 kA

Table C2

Insulation Material	PVC $70^{\circ} \mathrm{C}$ A or H05V... A or H07V...$\leq 300^{\square} \mid>300^{\square}$		PVC $90^{\circ} \mathrm{C}$ H05V2... H07V2... $\leq 300^{\square} \mid>300^{\square}$		PEX / EPR U1000R... H07Z..., H07G...	Rubber $60^{\circ} \mathrm{C}$ A or H05R... A or H07R...
Copper	115	103	100	86	143	141
Aluminium	76	68	66	57	94	93

Principle

When a design current lb flows through a conductor, the impedance of the conductor causes a drop in the voltage between the source and the end of the circuit. Table U1 opposite lists the maximum voltage drop values in \%, defined by standard NF C 15-100.

Determining the voltage drop of the circuit $\Delta \mathbf{U}$

Table U2 lists the voltage drop value u (in volts) between the phase and the neutral for:

- Three-phase + neutral 230/400 V system
- Length of circuit $L=100 \mathrm{~m}$
- Design current lb=1 A

For single-phase 230 V circuits, multiply the values by 2 . For different design current lb (in A) and circuit lengths L (in metres), the voltage drop is calculated using the following formula:

$$
\mathrm{u}(\text { circuit })=\frac{\mathrm{u}(\text { table } \mathrm{U} 2) \times \mathrm{lb} \times \mathrm{L}}{100}
$$

$$
\Delta u(\%)=\frac{u(\text { circuit }) \times 100}{230}
$$

Note: If the device being powered is a lighting unit, the design current lb is still the reference value for calculating the voltage drop. It is not replaced by the current value I_{A} (maximum current during the stabilisation time for a lighting unit). However, it is recommended that you ensure that the voltage drop for I_{A} allows the lighting to work during the stabilisation period (June 2005 update of the UTE C15-105 guide).

Examples

Circuit 1

Table U2

- $\mathrm{S}_{\mathrm{ph}}=95 \mathrm{~mm}^{2}$
- U1000R02V (copper) $\} u=0.024 \mathrm{~V}$
$-\cos \varphi=0.8$

Circuit voltage drop

- $\mathrm{L}=90 \mathrm{~m}$
$-\mathrm{lb}=140 \mathrm{~A}$
$u($ circuit $)=\frac{0.024 \times 90 \times 140}{100}$
$\Delta u($ circuit $)=\frac{3.02 \times 100}{230}$
$\mathrm{u}($ circuit 1$)=3.02 \mathrm{~V}$
Δu (circuit) $=1.3 \%$

Circuit 2

Table U2
$-\mathrm{S}_{\mathrm{ph}}=10 \mathrm{~mm}^{2}$
$\left.\begin{array}{l}-\mathrm{S}_{\mathrm{ph}}=10 \mathrm{~mm} \\ -\operatorname{U1000R02V} \text { (copper) } \\ -\cos \varphi=0.8\end{array}\right\} u=0.19 \mathrm{~V}$

Circuit voltage drop

- $\mathrm{L}=40 \mathrm{~m}$
$-\mathrm{lb}=55 \mathrm{~A}$
u (circuit) $=\frac{0.19 \times 40 \times 55}{100}$
single-phase u (circuit) $=$
$2 \times u$ (circuit) Ph / N i.e. 2×3.96
$u($ point $B)=$
u (circuit 1) +u (circuit 2) $=3.02+8.36$
$\Delta u($ point $B)=\frac{11.38 \times 100}{230}$

$$
\mathrm{u}(\text { circuit } 2)=8.36 \mathrm{~V}
$$

$$
\mathrm{u} \text { (circuit) }=4.18 \mathrm{~V}
$$

$u($ point $B)=11.38 \mathrm{~V}$

Table U1

	Lighting	Other usage
Power from a public LV network	3%	5%
Power from a private HV/LV substation	6%	8%

Table U2

Cross- section in mm^{2}	Copper					
	$\cos \varphi$					
	0.5	0.8	1	0.5	0.8	1
	0.77	1.23	1.53	1.24	1.98	2.47
	0.47	0.74	0.92	0.75	1.19	1.48
	0.29	0.46	0.58	0.47	0.74	0.93
	0.20	0.31	0.38	0.32	0.50	0.62
10	0.12	0.19	0.23	0.19	0.30	0.37
16	0.079	0.12	0.14	0.12	0.19	0.23
25	0.053	0.078	0.092	0.081	0.12	0.15
35	0.040	0.057	0.066	0.060	0.089	0.11
50	0.031	0.044	0.048	0.046	0.067	0.078
70	0.023	0.031	0.033	0.033	0.047	0.053
95	0.019	0.024	0.024	0.026	0.036	0.039
120	0.017	0.020	0.019	0.022	0.029	0.031
150	0.015	0.017	0.015	0.019	0.025	0.025
185	0.013	0.015	0.012	0.017	0.021	0.020
240	0.012	0.012	0.010	0.015	0.017	0.015
300	0.011	0.011	0.008	0.013	0.015	0.012

$\Delta u($ point $B)=4.95 \%$

Protection against minimum short-circuit currents

A short circuit can occur at the end of a line. In this case, the worstcase current, i.e. the minimum short-circuit current, must be taken into account, as indicated in the diagram opposite. The installation conditions consist of verifying that the protective device placed at the source of the line cuts the Ik min. within a determined time, before the conductors and installation deteriorate, according to the following conditions:

Irm < Ik min. for the circuit breakers
 la < lk min. for the fuses

Irm: Magnetic trip current
la: 5-second fusing current for fuse

In practice, checking the following is L circuit $<L$ max.

The tables below list the maximum lengths (in metres) protected against short circuits, for the following conditions:

- Copper conductors.
- Three-phase + neutral 230/400 V system and cross-section of neutral = cross-section of phase.
- Type and rating of protective device.

Three-phase system
Three-phase + neutral system

For different characteristics, multiply the table values by the following C coefficients:

- C = 1.33: If Sneutral = 0.5 Sphase, starting with cross-section of the neutral in the table.
- $C=1.73$: If the neutral is not distributed.
$-\mathrm{C}=0.42$: If the conductors are made of aluminium and are protected by fuses.
C = 0.63: If the conductors are made of aluminium and protected by circuit breakers.
For tables C8 and C9, on fuses, when 2 values are listed (e.g. 59/61): The first is for cables insulated with PVC: A/H05V..., A/H07V..., the second is for cables insulated with rubber, PEX or EPR: A/H07R... H07Z..., H07G..., U1000R..

Table C4 - Protection using type B circuit breakers

Cross-section	Ratin	type	uit	(A)							
	6	10	16	20	25	32	40	50	63	80	100
1.5	200	120	75	60	48	37	30	24	19	15	12
2.5	333	200	125	100	80	62	50	40	32	25	20
4	533	320	200	160	128	100	80	64	51	40	32
6	800	480	300	240	192	150	120	96	76	65	48
10		800	500	400	320	250	200	160	127	100	80
16			800	640	512	400	320	256	203	160	128
25					800	625	500	400	317	250	200
35	L max. in metres					875	700	560	444	350	280
50								760	603	475	380

Table C5 - Protection using type C circuit breakers

Cross-section	Ra	typ	rcuit	(A)							
	6	10	16	20	25	32	40	50	63	80	100
1.5	100	60	37	30	24	18	15	12	9	7	6
2.5	167	100	62	50	40	31	25	20	16	12	10
4	267	160	100	80	64	50	40	32	25	20	16
6	400	240	150	120	96	75	60	48	38	30	24
10	667	400	250	200	160	125	100	80	63	50	40
16		640	400	320	256	200	160	128	101	80	64
25			625	500	400	312	250	200	159	125	100
35	L max. in metres		875	700	560	437	350	280	220	175	140
50					760	594	475	380	301	237	190

Table C6 - Protection using type D circuit breakers

Cross-section (mm^{2})	Rating of the type D circuit breakers										
	6	10	16	20	25	32	40	50	63	80	100
1.5	50	30	18	15	12	9	7	6	5	4	3
2.5	83	50	31	25	20	16	12	10	8	6	5
4	133	80	50	40	32	25	20	16	13	10	8
6	200	120	75	60	48	37	30	24	19	15	12
10	333	200	125	100	80	62	50	40	32	25	20
16	533	320	200	160	128	100	80	64	51	40	32
25	833	500	312	250	200	156	125	100	79	62	50
35		700	437	350	280	219	175	140	111	87	70
50			594	474	380	297	237	190	151	119	95

Table C7 - Protection using general-use circuit breakers

Sph copper mm²	ref.	x160		x160							x250									
	Bc	18 kA		25/40 kA							40 kA									
	In (A)	125	160	25	40	63	80	100	125	160	100		125		160		200		250	
	Setting (x\|n)	Fixed		Fixed							6-8-10-13								5-7-8-11	
	Irm (A)	1500	1600	600	600	1000	1000	1500	1500	1600	600	1300	750	1625	960	2080	1200	2600	1250	2750
6		13	13	32	32	20	20	13	13	13	32	13	25	13	20	10	16	8	16	6
10		21	21	53	53	33	33	21	21	21	53	21	42	21	33	17	27	13	27	10
16		33	33	85	85	53	53	33	33	33	85	33	67	33	53	27	43	21	43	17
25		52	52	132	132	83	83	52	52	52	132	52	104	52	83	42	67	33	67	26
35		73	73	185	185	117	117	73	73	73	185	73	146	73	117	58	93	47	93	36
50		99	99	251	251	158	158	99	99	99	251	99	198	99	158	79	127	63	127	49
70		146	146	370	370	233	233	146	146	146	370	146	292	146	233	117	187	93	187	73
95		198	198			317	317	198	198	198		198	396	198	317	158	253	127	253	99
120		250	250			400	400	250	250	250		250		250	400	200	320	160	320	125
150		272	272			435	435	272	272	272		272		272	435	217	348	174	348	136
185		321	321					321	321	321		321		321		257	411	206	411	161
240		400	400					400	400	400		400		400		320		256		200

Table C8 - Protection using general-use circuit breakers

Sph cop- per mm ${ }^{2}$	ref.	h250 LSI						h630 LSI						h1000 LSI				h1600 LSI		
	Bc	50 kA						50/70 kA						50/70 kA				50/70 kA		
	In (A)	40		125		250		250		400		630		800		1000		1250		1600
	Setting (xin)	2.5-5-10						2.5-5-10				2.5-5-8		2.5-5-10		2.5-5-8		2.5-5-10		
	Irm (A)	100	400	313	1250	625	2500	625	2500	1000	4000	1575	5040	2000	8000	2500	8000	3125	12500	4000
6		200	50	63	16	32	8	32	8	20	5	13	4	10		8		6		5
10		333	83	104	27	53	13	53	13	33	8	21	7	17	4	13	4	10		8
16			133	167	43	85	21	85	21	53	13	33	11	27	7	21	7	17	4	13
25			208	260	67	132	33	132	33	83	21	52	17	42	10	33	10	26	7	21
35			292	365	93	185	47	185	47	117	29	73	23	58	15	47	15	36	9	29
50			396	495	127	251	63	251	63	158	40	99	32	79	20	63	20	49	13	40
70					187	370	93	370	93	233	58	146	47	117	29	93	29	73	19	58
95					253		127		127	317	79	198	63	158	40	127	40	99	25	79
120					320		160		160	400	100	250	80	200	50	160	50	125	32	100
150					348		174		174	435	109	272	87	217	54	174	54	136	35	109
185					411		206		206		128	321	103	257	64	206	64	161	41	128
240							256		256		160	400	128	320	80	256	80	200	51	160

Table C9 - Protection using aM fuses

Cross- section $\left(\mathrm{mm}^{2}\right)$	Rating of aM fuses (A)																	
	$28 / 33$	$19 / 23$	$13 / 15$	$8 / 10$	$6 / 7$													
2.5	67	$47 / 54$	$32 / 38$	$20 / 24$	$14 / 16$	$9 / 11$	$6 / 7$											
4	108	86	69	$47 / 54$	$32 / 38$	$22 / 25$	$14 / 17$	$9 / 11$	$6 / 7$									
6	161	129	104	81	$65 / 66$	$45 / 52$	$29 / 34$	$19 / 23$	$13 / 15$									
10				135	108	88	68	$47 / 54$	$32 / 38$									
16						140	109	86	69									
25	L max. in metres																135	108
							151											

Example:

Calculation of max. length protected by a x160 /160 A circuit breaker
Calculation of C coefficient:

- Distributed neutral
- U 1000 R02V $\Delta \rightarrow$ copper cable $\} \rightarrow C=1$
- Sphase = Sneutral $=95 \mathrm{~mm}^{2}$
- Sphase = $95 \mathrm{~mm}^{2}$
$\}$ table $\mathrm{C} 7 \rightarrow \mathrm{~L}$ max. $=198 \mathrm{~m}$
- 160 A (Irm at 1600 A)

Table C10 - Protection using gG fuses

Cross- section $\left(\mathrm{mm}^{2}\right)$	Rating of gG fuses (A)																	
1.5	82	$59 / 61$	$38 / 47$	$18 / 22$	$13 / 16$	$6 / 7$												
2.5		102	82	$49 / 56$	$35 / 43$	$16 / 20$	$12 / 15$	$5 / 7$										
4			131	89	76	$42 / 52$	$31 / 39$	$14 / 17$	$8 / 10$									
6				134	113	78	$67 / 74$	$31 / 39$	$18 / 23$									
10					189	129	112	74	$51 / 57$									
16							179	119	91									
25	L max. in metres																186	143
35							200											

160 A
$\mathrm{Irm}=10 \times \mathrm{In}=1600 \mathrm{~A}$
U 1000 R02V
$4 \times 95 \mathrm{~mm}^{2}$
$\mathrm{L}=90 \mathrm{~m}$

$$
\text { L max. }=198 \times 1=198 \mathrm{~m}
$$

Protection against minimum short-circuit currents is provided

General points

Electrical risks

Electrical risks are primarily physical:
The human body, accidentally subjected to a source of voltage, conducts the electrical current, which can have two types of consequences:

- internal and external burns
- muscular contractions (tetanus).

There are also thermal risks:
In order to provide protection against the risk of fire, the earth fault current must be limited to 0.3 A (NFC 15-100 art. 531.2.3.3).

The sources of electrical risks

In order for contact to be made through the body, there has to be two points of contact with simultaneously accessible parts carrying different potentials. Two types of contact can lead to the risk of electrical shock:

- direct contact.
- indirect contact

Direct contact

Direct contact is when a person accidentally comes into contact with either:

- 2 active conductors.
- or 1 active conductor and an exposed conductive part connected to the earth.
Direct contact is generally the result of negligence, clumsiness or a failure to abide by safety rules.

Indirect contact

Indirect contact is when a person comes into contact with a metal object that has accidentally had current applied to it by an poorly insulated active conductor, and an exposed conductive part connected to the earth.
It is generally an accident connected to the state of the electrical equipment.

RA = Impedance of the earth electrode for the exposed conductive parts
Uc = Contact voltage
Ic = Current through body
Rh $=$ Impedance of human body $\sim 2000 \Omega$
If $=$ Fault current

The parameters of electrical risks

They are as follows:

- The intensity of the electric current passing through the human body: Ic (the intensity is directly linked to the impedance of the human body: Rh).
- The contact voltage at the source of the accident: Uc.
- The duration the voltage is accidentally applied for: t.
- The consequences of the electrical risk according to the intensity (Ic) and duration (t); they are estimated in the diagram opposite (IEC 479-1).
- The limits of the electrical risk according to the contact voltage Uc and duration t.
Since the publication of practical guide UTE C. 15-105 in June 1999, following studies by a group of experts from the IEC, it is accepted that the skin can be penetrated by an contact voltage of around 100 V .
For this value of 100 V , as the skin was damaged, the humidity had no influence on the impedance of the human body. As such, for practical reasons, the conventional voltage limit of 50 V applies generally in all situations (UL = 50 V).

Duration/current areas for effects of alternating current on individuals

Areas	Physiological effects
Area AC1	Usually no reaction
Area AC2	Usually no dangerous physiological effect
Area AC3	Usually no organ damage; likelihood of muscular contractions and respiratory problems
Area AC4	In addition to area AC3, likelihood of ventricular fibril- lation increases up to around 5\% (curve c2) or up to around 50\% (curve c3); increasing intensity and dura- tion raise the risk of pathophysiological effects such as cardiac arrest, respiratory arrest and severe burns occurring

Protection of individuals against electrical risks

A -Direct contact

Irrespective of the neutral point connection used, the fault must be eliminated when it arises (high-sensitivity RCCBs: IDn $\leq 30 \mathrm{~mA}$).

B-Indirect contact
Protection of individuals according to the neutral point connection system used
There are three neutral point connection system, which differ by:

1) The state of the the neutral with respect to the earth
2) The state of exposed conductive parts with respect to the earth or neutral, with each of these being represented by a letter.
3) The neutral point connection system, represented by the combination of two letters.

Special cases for all of the neutral point connection systems: High-sensitivity RCCB $\leq 30 \mathrm{~mA}$
This type of protection is required for the following installations and circuits (NF C 15-100 532.2.6):

- Power socket circuits

In ≤ 32 A irrespective of the location and neutral point connection system.

- Power socket circuits irrespective of the rating for:
- Wet rooms (at least class AD4).
- Temporary installations, such as those for building sites.
- Circuits in bathrooms and swimming pools
- Fairground installations
- Supplying caravans and recreational boats
- Installations for agricultural and horticultural establishments

TT system: Separate earthing of exposed conductive parts

Principle:

The occurrence of an insulation fault leads to a dangerous increase in the potential of exposed conductive parts.
This means that the installation is to include a device that cuts the power when the first fault occurs.
In practice, this is achieved using an RCCB, the sensitivity of which is determined according to the impedance of the earth electrode (RA).

Using the formula: $I \Delta n \leq \frac{U L}{R A} \quad$ with $U L=50 V$
The table below gives the maximum RA values (Ω) according to Δn.
Table I1

Nominal residual current ($1 \Delta \mathrm{n}$)		Maximum value of impedance of earth electrode for the exposed conductive parts in Ω (RA)
Low sensitivity	$\begin{aligned} & 20 \mathrm{~A} \\ & 10 \mathrm{~A} \\ & 5 \mathrm{~A} \\ & 3 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 5 \\ & 10 \\ & 17 \end{aligned}$
Average sensitivity	$\begin{aligned} & 1 \mathrm{~A} \\ & 500 \mathrm{~mA} \\ & 300 \mathrm{~mA} \\ & 100 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 50 \\ & 100 \\ & 167 \\ & 500 \end{aligned}$
High sensitivity	$\leq 30 \mathrm{~mA}$	≥ 500

State of the neutral		State of exposed conductive parts		Neutral point connection system
Neutral con- nected directly to the earth	T	Exposed conductive parts connected to an earth electrode	T	System
Neutral con- nected directly to the earth	T	Exposed conductive parts connected to the neutral	N	System
Neutral isolated from the earth (or only via a high impedance)	I	Exposed con- ductive parts connected to an earth electrode	T	System

Additional protection using a high-sensitivity RCCB
(NF C15-100 Art. 411.3.3):

The use of high-sensitivity RCCBs is especially justified to provide protection for flexible cables supplying movable or portable devices. Wear or ageing of these cables can lead to deterioration of the insulation or the breaking of the protective conductor, with it being possible for these faults to go unnoticed.

(1) Earth electrode for the neutral RB
(2) Separate earth electrode for exposed conductive parts: RA1 - RA2
3) General differential protection

4 Differential protection by earth leakage
5) Earthing of exposed conductive parts

TN system

This diagram shows two variants:
A) TNC: Neutral conductor and with shared PEN protection. The occurrence of an insulation fault results in a phaseneutral short circuit.
This means that the continuity of the PEN conductor should be checked continually in order to prevent the risk of power being cut.

The use of this system is limited to lines with a cross-section $\geq 10^{2}$ for copper and $\geq 16^{2}$ for aluminium.
in order to limit interference of the current harmonics in the installation, the TNC system must be avoided (risk for sensitive equipment) (NF C15-100 art. 330.1.1.d).

When the third and multiples-of-three current harmonic percentage is unknown, it is recommended that a PEN is not used and that a separate PE is used instead (TNS system).
B) TNS: Separate neutral \mathbf{N} and protective PE conductors. This system is to be used in all cases where the TNC system is not suitable:

- Circuits with cable cross-sections of $<10^{2}$ for copper or $<16^{2}$ for aluminium.
- In areas with a risk of explosion or fire.
- When the impedance of the fault loop (Zs) is unknown (movable devices).

Protection against indirect contact

This is provided by overload protective devices and respecting the conditions that connect the fault current value and the operating current of the protective device.

$$
\text { Ifus }<\text { If } \quad \text { or } \quad \text { Irm }<\text { If } \quad \text { See diagram opposite }
$$

Ifus = Fusing current of fuses $(\mathrm{t} \leq \mathrm{t} 0$, see table I2)
Irm = Magnetic trip current (for circuit breakers)
If = Fault current
If being $=\frac{\mathrm{U}_{0}}{\mathrm{Zs}}$
$\mathrm{U}_{0}=$ Phase/neutral voltage
Zs = Impedance of fault loop

Practical method

As the fault current If is directly connected to the impedance Zs, which is itself connected to the length of the circuit considered, the practical method consists of determining the maximum length for a given line cross-section, which has a protective device CB at its source, as indicated in the diagram opposite.

(1) Earth electrode for the neutral RB
2) Exposed conductive parts connected to the PEN (TNC)
(3) Power cut when first fault occurs via fuses or circuit breakers Cutting the PEN is not permitted in the TNC system
4) Separate PE and neutral (TNS)
(5) Differential protection possible and cutting of neutral mandatory

Calculation of maximum length protected against indirect contact

The formula is as follows:

$$
L \text { max. }=\frac{0.8 U_{0} \text { Sph }}{\rho(1+m) \mid a}
$$

$\mathrm{U}_{0}=$ Voltage between the phase and neutral, in volts
Sph = Cross-section of the phase conductor, in mm^{2}
$m=\frac{\text { Sph }}{\text { Spe }}$ or $\frac{\text { Sph }}{\text { Spen }}$
$\mathrm{I} \mathrm{a}=$ Operating current for the protective device, equal to:
Either the magnetic trip value
For circuit breakers

- Type B: 5 In
- Type C: 10 In
- Type D: 20 In
- General purpose: 1.2 times the magnetic setting or the fusing current for fuses, according to the maximum duration as shown in table I2

Spe = Cross-section of the protective conductor
Spen $=$ Cross-section of the combined protective and neutral conductor
$\rho \quad=$ Impedance of the conductor at temperature of $20^{\circ} \times 1.25$, equal to 0.023 ohms. $\mathrm{mm}^{2} / \mathrm{m}$ for copper and 0.037 ohms. $\mathrm{mm}^{2} / \mathrm{m}$ for aluminium

Determining the maximum length

In practice, simply determine this length using tables 14 to I8, according to:
$\left.\begin{array}{l}\text { (1) - The } m \text { ratio: } 1 / 2 / 3 \\ \text { - The material of the conductor, copper/aluminium }\end{array}\right\}$ see table I3
The "C" coefficients given in table 13 are multiplied by the values listed in the tables of lengths (tables 14 to I8).
(2) - Cross-section of the conductor

- Rating of the protective devices
\rightarrow tables 14 to 18

Protection against indirect contact is provided is the max. protected $\mathrm{L}>\mathrm{L}$ in circuit being considered

Table 12

Nominal voltage of the installation U_{0} (in volts)	Maximum break time in seconds for final circuits $\left(\mathrm{U}_{\mathrm{L}}=50 \mathrm{~V}\left(\mathrm{t}_{\mathrm{o}}\right)\right)$
120	0.8
230	0.4
400	0.2

Table I3

m	C coefficient	
	Copper	1
	Aluminium	0.63
3	Copper	0.67
	Aluminium	0.42
	Copper	0.5
	Aluminium	0.32

Table 14
Maximum length of conductors protected using a gG fuse

Cross-	Nom	al ra	d cu	nt o	us				
$\left(\mathrm{mm}^{2}\right)$	16	20	25	32	40	50	63	80	100
1.5	53	40	32	22	18	13	11	7	6
2.5	88	66	53	36	31	21	18	12	9
4	141	106	85	58	49	33	29	19	15
6	212	159	127	87	73	50	43	29	22
10	353	265	212	145	122	84	72	48	37
16	566	424	339	231	196	134	116	77	59
25	884	663	530	361	306	209	181	120	92
35		928	742	506	428	293	253	169	129
50				687	581	398	343	229	176
70	L max. in metres				856	586	506	337	259
95	L max. in metres					795	687	458	351
120							868	578	444

Table 15
Maximum length of conductors protected using type B circuit breakers

Cross-section (mm²)	Nominal rated current of circuit breaker (A)										
	6	10	16	20	25	32	40	50	63	80	100
1.5	200	120	75	60	48	37	30	24	19	15	12
2.5	333	200	125	100	50	40	50	40	32	25	20
4	533	320	200	160	128	100	80	64	51	40	32
8	800	480	300	240	192	150	120	96	76	60	48
10		800	500	400	320	250	200	160	127	100	80
16			800	640	512	400	320	256	203	160	128
25					800	625	500	400	317	250	200
35						875	700	560	444	350	280
50								760	603	475	380

Table I6
Maximum length of conductors protected using type C circuit breakers

Crosssection (mm^{2})	Nominal rated current of circuit breaker (A)										
	6	10	16	20	25	32	40	50	63	80	100
1.5	100	60	37	30	24	18	15	12	9	7	6
2.5	167	100	62	50	40	31	25	20	16	12	10
4	267	160	100	80	64	50	40	32	25	20	16
6	400	240	150	120	96	75	60	48	38	30	24
10	667	400	250	200	160	125	100	80	63	50	40
16		640	400	320	256	200	160	128	101	80	64
25			625	500	400	312	250	200	159	125	100
35			875	700	560	437	350	280	222	175	140
50					760	594	475	380	301	237	190

Table 17
Maximum length of conductors protected using type D circuit breakers

Crosssection (mm ${ }^{2}$)	Nominal rated current of circuit breaker (A)										
	6	10	16	20	25	32	40	50	63	80	100
1.5	50	30	18	15	12	9	7	6	5	4	3
2.5	83	50	31	25	20	16	12	10	8	6	5
4	133	80	50	40	32	25	20	16	13	10	8
6	200	120	75	60	48	37	30	24	19	15	12
10	333	200	125	100	80	62	50	40	32	25	20
16	533	320	200	160	128	100	80	64	51	40	32
25	833	500	312	250	200	156	125	100	79	62	50
35		700	437	350	280	219	175	140	111	87	70
50			594	475	380	297	237	190	151	119	95

Table I8
Maximum length of conductors protected using general-purpose circuit breakers

Sph copper mm ${ }^{2}$	ref.	x160		$\times 160$							x250									
	Bc	18 kA		25/40 kA							40 kA									
	In (A)	125	160	25	40	63	80	100	125	160	100		125		160		200		250	
	Setting (x\|n)	Fixed		Fixed							6-8-10-13								5-7-8-11	
	Irm (A)	1500	1600	600	600	1000	1000	1500	1500	1600	600	1300	750	1625	960	2080	1200	2600	1250	2750
6		13	13	32	32	20	20	13	13	13	32	13	25	13	20	10	16	8	16	6
10		21	21	53	53	33	33	21	21	21	53	21	42	21	33	17	27	13	27	10
16		33	33	85	85	53	53	33	33	33	85	33	67	33	53	27	43	21	43	17
25		52	52	132	132	83	83	52	52	52	132	52	104	52	83	42	67	33	67	26
35		73	73	185	185	117	117	73	73	73	185	73	146	73	117	58	93	47	93	36
50		99	99	251	251	158	158	99	99	99	251	99	198	99	158	79	127	63	127	49
70		146	146	370	370	233	233	146	146	146	370	146	292	146	233	117	187	93	187	73
95		198	198			317	317	198	198	198		198	396	198	317	158	253	127	253	99
120		250	250			400	400	250	250	250		250		250	400	200	320	160	320	125
150		272	272			435	435	272	272	272		272		272	435	217	348	174	348	136
185		321	321					321	321	321		321		321		257	411	206	411	161
240		400	400					400	400	400		400		400		320		256		200

Sph. copper mm ${ }^{2}$	ref.	h250 LSI						h630 LSI						h1000 LSI				h1600 LSI		
	Bc	50 kA						50/70 kA						50/70 kA				50/70 kA		
	In (A)	40		125		250		250		400		630		800		1000		1250		1600
	Setting (x\|n)	2.5-5-10						2.5-5-10				2.5-5-8		2.5-5-10		2.5-5-8		2.5-5-10		
	Irm (A)	100	400	313	1250	625	2500	625	2500	1000	4000	1575	5040	2000	8000	2500	8000	3125	12500	4000
6		200	50	63	16	32	8	32	8	20	5	13	4	10		8		6		5
10		333	83	104	27	53	13	53	13	33	8	21	7	17	4	13	4	10		8
16			133	167	43	85	21	85	21	53	13	33	11	27	7	21	7	17	4	13
25			208	260	67	132	33	132	33	83	21	52	17	42	10	33	10	26	7	21
35			292	365	93	185	47	185	47	117	29	73	23	58	15	47	15	36	9	29
50			396	495	127	251	63	251	63	158	40	99	32	79	20	63	20	49	13	40
70					187	370	93	370	93	233	58	146	47	117	29	93	29	73	19	58
95					253		127		127	317	79	198	63	158	40	127	40	99	25	79
120					320		160		160	400	100	250	80	200	50	160	50	125	32	100
150					348		174		174	435	109	272	87	217	54	174	54	136	35	109
185					411		206		206		128	321	103	257	64	206	64	161	41	128
240							256		256		160	400	128	320	80	256	80	200	51	160

Example:
Calculation of maximum protected L using a x160 A circuit breaker

- U 1000 R02V \rightarrow copper
- Circuit breaker
$-\mathrm{S}_{\text {pen }}=\mathrm{S}_{\mathrm{ph}} \longrightarrow \mathrm{m}: 1$
$-\mathrm{S}_{\mathrm{ph}}=95 \mathrm{~mm}^{2}$
- 160 A
- Irm at 1600 A

L max. $=198 \mathrm{~m}$

TNC system

L max. (198 m) > L circuit (90 m)
Protection against indirect contact is provided

x160 range
HHA160H three-pole, thermal adjusted to 160 A
magnetic adjusted to 1600 A U 1000 R02V

Sph $=95 \mathrm{~mm}^{2}$
Spen $=95 \mathrm{~mm} 2$
$\mathrm{L}=90 \mathrm{~m}$

IT system

The occurrence of an insulation fault does not result in an dangerous increase in the potential of the exposed conductive parts, but it must be alerted, found and resolved.
This involves the installation of an insulation monitoring device (IMD). The occurrence of a second insulation fault results in situations identical to:

- In the TT system: When the exposed conductive parts are not interconnected
- In the TN system: When the exposed conductive parts are interconnected

Calculation of maximum length protected against indirect contact
The method is identical to that in the TN system, with only some parts of the formula differing, according to the distribution of the neutral.

$$
L \max .=\frac{0.4 U S}{\rho(1+\mathrm{m}) \mathrm{Ia}}
$$

- Neutral not distributed

$\mathrm{U}=$ Voltage between phases
S = Sph = cross-section of phase conductor
$\mathrm{m}=\frac{\mathrm{Sph}}{\mathrm{Spe}}$

- Distributed neutral

$\mathrm{U}=\mathrm{U}_{0}=$ Voltage between the phase and neutral
$\mathrm{S}=\mathrm{Sn}=$ Cross-section of neutral conductor
$\mathrm{m}=\frac{\mathrm{Sph}}{\mathrm{Spe}}$

- Maximum break time for the protective device (see table I9)
- C coefficient (table I10) multiplied by the length values in tables I4 to I8

Example:

IT system, distributed neutral
x160 range
HHA161H, four poles, thermal
set to 160 A
magnetic set to 1600 A
160 A
$\mathrm{U} 1000 \mathrm{R02V}$
$4 \times 95 \mathrm{~mm}^{2}$
$\mathrm{Spe}=95 \mathrm{~mm}^{2}$
$\mathrm{~L}=90 \mathrm{~m}$

Calculation of max. length protected by a x160 circuit breaker

L max. $=0.5 \times 198=99 \mathrm{~m}$

[^0]IT system: Interconnection of earth electrodes

First fault: Find
Resolve
(1) Earth electrode for the neutral RB (isolated or high impedance)
(2) Overload protective device
(3) Insulation monitoring device
(4) Earth electrode for exposed conductive parts RA
(5) Interconnection of earth electrodes
(6) Earthing of exposed conductive parts
(7) Power is cut upon second fault by fuses or circuit breakers
(8) If the neutral is distributed: Protection against overloads

Table 19

Nominal voltage of the installation U_{O} (in volts)	Maximum break time in seconds for final circuits $\left(\mathrm{U}_{\mathrm{L}}=50 \mathrm{~V}\left(\mathrm{t}_{\mathrm{o}}\right)\right)$
120	0.8
230	0.4
400	0.2

Table 110

General points

For high power requirements (industries, tertiary buildings with high power demands, etc.) a high-voltage (HV) power supply of between 1 and 33 kV (generally 20 kV) is provided by the energy providers from a public distribution network.

The high-voltage (HV) supply arrives at a delivery substation, which act as a boundary between the public distribution network and the internal installation (private).
There are two possible options:

- Option 1: Delivery substation with a $\mathrm{HVa} / \mathrm{LV}$ transformer, with low-voltage electrical distribution, where the energy consumption is metered in low voltage (LV).
- Option 2: Delivery substation with metering in HV. The internal distribution from the substation is carried out in HV to several transformers (located as close as possible to consumption areas)

There are different types of supply systems: Single-line, ring-main and parallel-feeder. These different systems are used according to the type of need (supply cut in the event of a fault, continuity needed in the event of a fault, etc.)

Substations are to be metered in low voltage (LV) when they consist of a single $\mathrm{HVa} / \mathrm{LV}$ transformer, the secondary current of which is rated at at most 2000 A (power rating 1250 kVA).
In other cases (power rating > 1250 kVA or combination of multiple $\mathrm{HVa} / \mathrm{LV}$ transformers), the substations are metered in HV.

Generally, the client is the owner of their HVa/LV transformer substation which is considered to be the electrical point of supply. The client is also responsible for its maintenance.
The type of substation and its location are chosen jointly by the distributor and the client
The HV connection has several advantages:

- Free choice of neutral point connection for their installation (earthing system, "ES").
- Adaptable pricing and the possibility of changing the subscribed demand.
Different options allow the client to adapt the pricing to their usage. These are specified in the subscription contract.

Note: The client only has access to the LV part and the HV switchdisconnector. $\mathrm{HVa} / \mathrm{LV}$ interlocks are to be included in order to allow interventions to be performed in safety.

Single-line diagrams

- Delivery substation with low-voltage metering
(only supplying an single $\mathrm{HVa} / \mathrm{LV}$ transformer)

- Delivery substation with high-voltage metering
(supplying two $\mathrm{HV} / \mathrm{LV}$ transformers)
(supplying two HVa/LV transformers)

Restrictions from standards and legislation

There are three main supply systems:

- Single-line.
- Ring-main (passing through the substation).
- Parallel-feeder, with manual or automatic switching.

The Hager energy distribution service can create the low-voltage distribution part, up to the powers covered by a single 1000 kVA $\mathrm{HVa} / \mathrm{LV}$ transformer or two 800 kVA transformers in parallel.

Single-line diagrams

- Single-line supply with low-voltage metering
(1×1250 kVA HVa/LV transformer)

HV:
DHV:
PHV:
TR HV/LV:
SMT:
kWhM LV or HV/LV: High/low-voltage kilowatt-hour metering DPLV: Low-voltage disconnector and protection LV: Low-voltage distribution

- Single-line supply with high-voltage metering

HV:	Connection point between the substation and the high- DHV:
voltage distribution network	

General characteristics (high voltage)

These substations are powered at high-voltage with the voltage $>1000 \mathrm{~V}$ and via different means - single-line, parallel-feeder or ringmain - from the high-voltage distribution network. As such, the internal installation has a private transformer substation, known as the "Client Substation" and the metering of energy consumption is done according to the amount of subscribed demand, in either high or low voltage. Apart from the three means mentioned above, other simplified substations powered via the overhead network are also possible:

- Pole-mounted substations for power ratings of at most 160 kVA.
- Prefabricated substations within an enclosure for power ratings of at most 250 kVA.

When designing the HV installation, the following aspects must be taken into account:

- Equipment designed for voltage of 24 kV .
- Maximum power demand.
- Continuity of service.
- Earthing systems.
- External influences.
- HV short-circuit current.
- Supply systems.

The energy distributor supplies all of the technical information (nominal voltage of the HV network, short-circuit current for the HV network, etc.) that is of use for developing the project. A request for approval must be made to the energy distributor before any work is started.

Voltage range

Classification of voltages

Range	ELV	LVa	LVb
Alternating	$\mathrm{U} \leq 50 \mathrm{~V}$	$50<\mathrm{U} \leq 500 \mathrm{~V}$	$500<\mathrm{U} \leq 1000 \mathrm{~V}$
Direct	$\mathrm{U} \leq 120 \mathrm{~V}$	$120<\mathrm{U} \leq 750 \mathrm{~V}$	$750<\mathrm{U} \leq 1500 \mathrm{~V}$
Range	HVa	HVb	
Alternating	$1000<\mathrm{U} \leq 50000 \mathrm{~V}$	$\mathrm{U}>50000 \mathrm{~V}$	
Direct	$1500<\mathrm{U} \leq 75000 \mathrm{~V}$	$\mathrm{U}>75000 \mathrm{~V}$	

Point of supply

This is the boundary between so-called "internal" private installations belonging to the client and those for which the energy distributor is responsible. This point of supply is located:

- In an overhead connection, upstream of where the HVa line is anchored to the "client" substation building.
- In an underground connection; immediately downstream of the end of the substation supply cable(s).

Earthing

Exposed conductive parts in the substation, the neutral of the lowvoltage installation and exposed conductive parts in the LV installation connected to the earth. According to the circumstances, these earth electrodes can be separated or interconnected.

- Systems for earthing the substation: TNR, TTN, TTS, and ITR, ITN, ITS (see NF C 13-100 Art. 312).
- Systems for earthing the LV part - three systems; TT, TN or IT (see NF C 15-100 and pages 1.30 to 1.34 of the Hager technical guide).

High- and low-voltage protection

The protection of HV circuits against short circuits is provided using a HV fuse (see table for standard power ratings NF C 64-210). In certain cases there can be combinations of switches and fuses. Several types of protection are to be included in a delivery substation (protection against short circuits between phases, against earth faults, against atmospheric overvoltage). The transformers must also be protected against overloads (the various adjustments are carried out by the energy distributor).

The protection of transformers against overloads is achieved using: - Either a thermal detector that detects the maximum coil temperature of the transformer or liquid dielectric material.

- Or a current-based relay or release on the low-voltage part.

These devices must control either the removal of load from the transformer through the use of a switching device on the LV part, or the removal of load from the transformer through the use of a switching device on the HV part.

Single-line diagrams

Protection for a air-cooled transformer

The coils are fitted with a sensor to monitor the internal temperatures and to allow the cutting of the LV load and HV supply in the event of a noticeable technical issue.

Protection for an oil-immersed transformer (transformer in an

 oil tank)A "GPT2E" monitoring and protection relay (internal transformer fault) will be implemented when using a transformer with a mineral-oil tank. Several checks are carried out: Detection of gas, pressure and temperature at 1 or 2 thresholds.
Detection of temperature at the second temperature threshold, detection of gas or pressure must result in the cutting of the LV load, then of the HV supply in the event of a internal transformer fault.

Single-line diagrams

- Protection using "GPT2E" monitoring relay

- GPT2E control system created with the Elcom program

HV/LV interlocking

A safety interlocking system uses multiple locks to ensure the safety of individuals using the electrical installations. It also provides protection for the electrical installations, avoiding mishandling in any operating and maintenance of installations.
HV/LV interlocking (see NF C 13-100 Art. 462 and 463) enables the following:

- Preventing access to HV units before they are made dead.
- Preventing the opening or closing of a loaded disconnector.
- Interlocking with two HVa/LV transformers

Equipment in the substation

The transformer substation room has the following equipment:

- Three-phase HVa/LV double-wound transformers (power rating of between 25 and 1250 kVA).
The main properties of a transformer (power rating, voltage and transformation ratio, short-circuit current and coupling) are displayed on its data plate.
- HV switchgear: Surge arrestor, fuse, etc.
- Meter panel according to type (simplified, type 1 or 2) with current transformers. The metering is in LV up to 2000 A , or HV above this.
- LB circuit breaker: The circuit breaker must provide protection for the transformer against overloads and LV short circuits.
Thermal releases must be adjustable according to the subscribed demand in the even the metering is simplified (at least 250 kVA). Magnetic releases must be able to be adjusted separately from thermal ones.
It must be possible to seal off the thermal and magnetic controls.
According to the type of earthing system (e.g. TT), a differential protective device could be included with it.
- Displays: Posters, notices, safety signs, etc.

Single-line diagrams

- Interlocking with one HVa/LV transformer

Location

The type of substation and its location are chosen jointly by the distributor and the client. The client only has access to the LV part and the HV switch. The client ensures that private indoor electrical installations that they use remain operational. There are several possible installations:

- Substation within a building.
- Prefabricated substation that is partially below ground within an enclosure (max. 1000 kVA).
- Prefabricated simplified substations within an enclosure for power ratings of at most 250 kVA .
- Pole-mounted substation (limited to 160 kVA).

Transformer power ratings, standardised values

Standardised power rating values (kVA)	25	40	50	63	80	100	125	160	200	250	315	400	500	630	800	1000	1250
Usual values (kVA)	25		50			100		160		250		400		630		1000	

Example of a "substation within a building" (characteristics)

Example: Installation of a substation in a metal enclosure, ring-main system (LV metering).

The HVa network power supply is brought close to the transformer substation. The HVa cable is connected to a ring-main unit in the substation. As the delivery substation is within the site, the distributor shall be guaranteed access to it at any time.
From the transformer substation onwards, the electrical distribution is done in low voltage, either within the same room or in different rooms
(according to the design and usage). The low-voltage main distribution board (LVMDB) is installed either:

- In the transformer substation room.
- Or in an electrical room located nearby or in another location in the building, according to how it used or designed.
$\mathrm{HVa} / \mathrm{LV}$ interlocks are to be included in order to allow interventions to be performed in safety.

Equipment in the transformer substation room and the electrical room

Example 1: Low-voltage main distribution board installed In the

 transformer substation room- HV board.
- HVa/LV transformer (air-cooled or oil-immersed).
- Temperature protection for transformer (air-cooled, GPT2E for oilimmersed).
- Lighting, substation room power sockets.
- Key-lockable interlocking.
- Various signs.
- Standard NF C 13-100, NF C 13-200, etc.

Low-voltage connection and distribution in the same room:

- Green tariff metering, type 1 and 2.
- Low-voltage main distribution board (protection panel and transformer low-voltage switching device along with distribution (LVMDB)), including:
- Safety connections.
- LV protection and general switching.

HVa/LV transformer substation room

Note:
LVMDV: Low-voltage main distribution board DB: Distribution board

- Distribution to secondary and final protective devices.
- Standard NF C 13-100.
- Standard NF C 15-100, UTE C 15-105 guide.
- Public- and employee access decrees and orders.

Example 2: Low-voltage main distribution board installed in the electrical room located close to or far from the transformer room

- HV board.
- HVa/LV transformer (air-cooled or oil-immersed).
- Temperature protection for transformer (air-cooled, GPT2E for oilimmersed).
- Lighting, transformer substation room power sockets.
- Key-lockable interlocking.
- Various signs.
- Standards NF C 13-100, NF C 13-200, etc.

Low-voltage connection, protection and switching for the transformer in the same room:

- Green tariff metering, type 1 and 2.
- LV protection and switching transformer board (TRB) including safety other connections.

Low-voltage main distribution board (LVMDB) installed in an dedicated electrical room, including:

- General switching, emergency disconnection, etc.
- Various secondary and final protective devices.
- Standard NF C 15-100, UTE C 15-105 guide.
- Public- and employee access decrees and orders.

Additional HV/LV equipment

The delivery or transformer substation also had the following equipment:

- HV units (ring-main unit, meter, disconnector and various HV protective devices).
- Various remote indication and information equipment.
- Various controls and interlocking in order to ensure the HV safety of staff.
- General disconnector for the LV installation. (See NF C 13-100 Art.571)
- The circuits intended to supply the following as connected upstream of the general disconnector:
- Substation lighting (In 10 A), normal and fixed safety lighting (see NF C 13-100 Art.762).
- Protection relays.
- Fault-current detectors for the incoming HV units.
- Insulation monitoring device (in the IT earthing system).
- Power supply (In 6 A) for remote control devices, information devices and general auxiliary contacts.
- A power socket circuit (In 16 A - see NF C 13-200 Art.712.5).
- General LV overload protection at terminals downstream of the transformer.
- Instrument transformers (current and voltage) and the energy meter.
- Reactive power compensating capacitors. (Could be use to improve the power factor according to standards NF C 54-100 and NF C 13-100 Art.572).
- Substation room ventilation (see NF C 13-200 Art.712.3).
- Operating and maintenance equipment (see NF C 13-100 Art. 621 and 622).

Note: The LV disconnection and general protection can be provided using:

- A switch-disconnector with visible break (immediately visible separation of contacts) that meets the regulations in standard NF EN 60947-3, combined with a moulded-case circuit breaker.
- Or a removable circuit breaker (moulded-case or air circuit breaker) that meets the regulations in standard NF EN 60439-1.

LV installations

For the designing of LV installations powered via a $\mathrm{HVa} / \mathrm{LV}$ transformer substation, see the applicable requirements regarding installations powered by a private transformer substation. In these installations, the earthing system (neutral point connection) must be chosen by the head of the establishment according to the operating, installation and maintenance criteria.
The source of the LV installation are the transformer output terminals.
The technical pages of the "tertiary catalogue" offer methods and guides for selecting "products and equipment" to provide protection of property and individuals against electric shocks (overloads, short circuits, indirect contact, etc.).
Calculations justifying the choice of wiring and protective devices can be created in accordance with the standart, using our "ElcomNet" network calculation program.

Aspects to be considered when drafting an installation plan:

- Electrical characteristics: Installed loads, neutral point treatment and grounding system (TT, TN, IT, etc.), supply (HV, LV, etc.), safety (source, power rating), short-circuit power, main, distribution and final boards and circuits.
- External influences (by building, room and location): Temperature, humidity, dust, impacts (IP, IK), corrosion, vibrations, fire, explosion.
- Compatibility characteristics: Overvoltage, starting, harmonics, leakage currents.
- Special requirements regarding operation, continuity of service, additional sources (replacement sources).
- Protection of individuals against electric shocks.

Note: The entire project is to be based on appliances and their control equipment, working backwards to the source, also considering the distribution boards and cabinets and the main distribution board.

The following standards and regulations are to be adhered to:

- NF C 15-100 and its UTE guides.
- The Decree of 14 November 1988 on the protection of workers.
- The regulation of 25 June 1980 on fire safety and its decrees and orders on public-access buildings.

Creation of low-voltage main distribution boards up to 1600 A

Example electrical diagram for a distribution system for electrical installations powered via a private transformer substation.

Technical characteristics of an implementation

Electrical distribution to buildings in the tertiary sector are limited to a power rating of:
$-\mathrm{P}=1250 \mathrm{kVA}(\mathrm{lk} 3 \mathrm{max} .=28.5 \mathrm{kA}-\mathrm{ln}=1805 \mathrm{~A})$ for 1 transformer. $-\mathrm{P}=2 \times 800 \mathrm{kVA}(\mathrm{lk} 3 \mathrm{max} .=36 \mathrm{kA}-\ln =2500 \mathrm{~A})$ for 2 transformers. Example implementations: Supermarket, school campus (senior school and sixth form college), retirement home, hotel, residential building, short-stay business premises, performance hall (theatre, socio-cultural, cinema, etc.), sports halls, hotel/restaurant, medical centre, campsite, office and service building, etc.

Standards and regulations

The standards and regulations that apply to this type of implementation are:

- NF C 13-100, postes de livraison établis à l'intérieur d'un bâtiment et alimentés par un réseau de distribution publique HTA (jusqu'à 33 kV) (delivery substations located within a building and powered by a HVa public distribution network (up to 33 kV).
- NF C 14-100, branchement réseau public BT (connection to a public LV network).
- NF C 15-100 installations électriques (electrical installations) with its guides UTE C 15-105, 15-103, etc.
- Employee-access building Decree of 14/11/88 on employee protection and its orders.
- Safety regulations for public-access buildings of 25 June 1980 with its decrees and orders.

Layouts (provisions for internal separations)

The layouts use separations by screens or partitions within the lowvoltage main distribution board unit.

- They are described in chapter 7.7 of standard NF EN 60 439-1.

They are subject to agreement between the manufacturer and the user. There are 4 distinct layouts: Layouts 1, 2 (a and b), 3 (a and b) and 4 (a and b) to protection against direct contacts in order to provide the required level of safety and availability.

- Layout 1: No separation.
- Layout 2: Separation of functional unit busbars, the terminals for external conductors are not (layout 2a) or are (layout 2b) separated from the busbars.
- Layout 3: Separation of functional unit busbars and separation of each functional unit from each other, the terminals for external conductors are not (layout 3a) separated from the busbars and the terminals for external conductors are separated from the functional units but not from each other (layout 3b).
- Layout 4: Identical separation as in layout 3a with the addition of the terminals for external conductors being part of the functional unit (layout 4a) or are separated from the functional units (layout 4b).

Low-voltage service ratings (IS - indices de service)
Before
MPC 634
www
Removable
Layout 4a IP25C

After
$I S=223$

The aim of the IS is to qualify the level of service provided by each type of low-voltage board regarding interventions for:

- Operating, for any operation leading to the installation or functional units (FU*) being made safe.
- Maintenance, for any intervention leading to the installation or functional units (FU*) being made safe.
- Modification, for any intervention leading to the modification or addition of a functional units (FU) of the installation.
*FU (functional unit): Set of devices connected to a piece of low-voltage equipment, such as protective, switching, and control devices, etc.

The IS comprises 3 numbers, the first for operating, the second for maintenance and the third for modifying the board.
Each IS rating is associated with a board design adapted to:

- Technical and economic needs.
- The level of authorisation of the operating staff.
- The level of qualification of the maintenance staff.
- The maximum intervention time in the event of a fault or for modifying the installation.
The IS helps to increase the reliability of the installation.

Note: Our equipment, created using quadro+ units, combined with a quadro 1600 equipment system have a maximum service rating for IS211.

With a rating of IS211, the consequences for the LV board the following areas are:

- Operating - any locking or breaking operation $=2 x x$: Operation limited to the single FU involved.
- Maintenance - any maintenance operation =x1x: Requires power to the entire board to be cut.
- Modification - any modification operation = xx1: Requires power to the entire board to be cut.
- See UTE C 60-429 guide. This guide is references in NF C 15-100 in chapter 558 Ensembles d'appareillage (sets of devices) concerning agreements between the user and the manufacturer.

Note: Boards created using quadro+ units can be laid out as layout 2 b as a maximum.

Technical characteristics for the creation of a "LVMDB" unit

Example of a low-voltage main distribution board (LVMDB) created using floor-standing combinable quadro+ units.

Main characteristics:

- Board located within the HVa/LV transformer substation (without a door, IP30, IK08, IS 211, layout 2a).
- $\mathrm{HVa} / \mathrm{LV}$ transformer, rated at 630 kVA .
- Earthing system: TNC/TNS.
- Entry via the top of the unit (via cable tray) to the "feeder" busbar, connection using 4 conductors (aluminium) per phase (L1/L2/L3) and for the PEN, connection using lugs.
- Connects to the air circuit breaker (according to NF C 13-100 - disconnector with visible break and LV protection).
- "General" busbar in the vertical sheath and transfer via the top of the horizontally mounted units.
- Horizontal mounting of protective devices (H3 moulded-case circuit breakers) for the main outgoing feeders and direct connection via "cable sheath" (with crosspieces for attaching cables outside of the sheath.
- Distribution outgoing feeders are connected to a terminal (max. $16 \mathrm{~mm}^{2}$) installed in the cable sheath.
- Various control accessories (emergency shut-off, signalling, GPT2E protection, measuring, etc.).
- All external conductors for outgoing feeders enter via a channel.

Design of a low-voltage main distribution board (In 1000 A)

Type of source (number and power rating) and selection of equipment

The size of the enclosures (depth, width) are selected according to the power rating and number of source transformers, the nominal current of the general energy distribution, the number of outgoing feeders, the types of connection to external conductors (terminals, direct, top, bottom, etc.), type of room the LVMDB is in, etc.

Degree of protection for units according to external influences, according to type of room and configuration:

- IP 40, open, frame only.
- IP 54, frame with panels.
- IP 55, sealed.

Note:
 LVMDB: Low-voltage main distribution board

SC: Switchboard cabinet

Technical characteristics of sources

In Hager's working area, there are two possible source configurations:

- Source with 1 HV/LV transformer

- Source with 2 HV/LV transformers

According to the type of implementation (e.g. public-access building), a replacement source ("emergency" source) in the form of a generating set (e.g. retirement home, etc.) can be added to either of these two configurations.

Standard characteristics commonly encountered in this type of installation

Power rating (kVA)	315	400	500	630	2×630	800	2×800	1000	1250
Number of sources	1	1	1	1	2	1	2	1	1
TR Ucc (\%)	4	4	4	4	4	6	6	6	6
Copper/Ph cable	1*150	1*240	1*300	$2 \times 1 * 185$	$2 \times 1 * 185$ (for 1 transformer)	$2 \times 1 * 300$	$2 \times 1 * 300$ (for 1 transformer)	$4 \times 1 * 185$	$4 \times 1 * 240$
Aluminium/Ph cable	1*240	$2 \times 1 * 150$	$2 \times 1 * 240$	$2 \times 1 * 300$	$2 \times 1 * 300$ (for 1 transformer)	$4 \times 1 * 185$	$4 \times 1^{*} 185$ (for 1 transformer)	$4 \times 1 * 300$	$4 \times 1 * 400$
Copper cable PE/PEN	1*150	1*240	1*300	$2 \times 1 * 185$	$2 \times 1^{*} 185$ (for 1 transformer)	$2 \times 1 * 300$	$2 \times 1 * 300$ (for 1 transformer)	$4 \times 1 * 185$	$4 \times 1 * 240$
Aluminium cable PE/PEN	1*240	$2 \times 1 * 150$	$2 \times 1 * 240$	$2 \times 1 * 300$	$2 \times 1 * 300$ (for 1 transformer)	$4 \times 1 * 185$	$4 \times 1^{*} 185$ (for 1 transformer)	$4 \times 1 * 300$	$4 \times 1 * 400$
lb (A)	455	578	722	910	$\begin{aligned} & 2 \times 910 \\ & 1820 \end{aligned}$	1155	$\begin{aligned} & 2 \times 1155 \\ & 2310 \end{aligned}$	1444	1805
Irth (A)	500	630	800	1000	2×1000	1250	2×1250	1600	2000
IN busbar	500	630	800	1000	2000	1250	2500	1600	2000
Du (\%)	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21
Ik3 max. (kA)	10.9	13.9	17.3	21.5	43	18.6	37.1	23	28.5
Ik1 max. (kA)	10.6	13.6	16.9	21	41.9	18.3	36.6	22.7	27

Note: These calculations were computer using the ElcomNet electrical system program and are indicative only. They must be checked for each implementation, the criteria (calculation variables) may change for each project.

Incoming feeder devices

The general disconnection of the LV installation (NF C 13-100 Art.571) is provided using a vis-ible-break device (immediately visible separation of contacts). This can be a switch-disconnector that meets the requirements of standard NF EN 60947-3 or a removable circuit breaker that meets the requirements of standard NF EN 60439-1.
The general LV protection against overloads downstream of the transformer is provided by a moulded-case circuit breaker combined with a disconnector with visible break or included in the removable circuit breaker (air circuit breaker).
Various additional controls and key-controlled interlocking provide safety for staff.

Version 1: Disconnector with visible break combined with a moulded-case circuit breaker (COO2)

Version 2: Removable circuit breaker C02 (air circuit breaker)

Receiver

Energy distribution (busbars) using quadro+ units

The "general energy distribution" busbars are mounted edgewise vertically in a sheath installed for this purpose (width 200, 300 or 400 mm), or mounted horizontally at the top of the unit.
The busbar supports (ref. UC823 and UC824) are recommended. They can hold 1 or 2 busbars with a width of 5 or 10 mm and a maximum height of 100 mm .

These supports can also be used to create "incoming feeder" busbars placed at the top or bottom of the unit, or "secondary" intermediate busbars which can be placed at any height in the unit (mounted on quatro+ perforated crossbars).
Above a certain rating (I_{N}) for this type of assembly, it is more convenient to connect busbars with a thickness of 10 mm to external conductors.

There are two types of assembly:
a) Main distribution busbar.
b) Incoming feeder connection busbar.

Main distribution busbar

Example of the creation of a "main" busbar 1. Mounting in 400 mm deep quatro+ units For busbars with In max. $=800 \mathrm{~A}$, with:

- Copper busbars $50 / 63 / 80 \times 5 \times 1$
- Busbar supports 3P-UC823/4P-UC824
- Fasteners for copper busbar 3P-UC825/4P-UC826

2. Mounting in 600 or 800 mm deep quatro+ units

For busbars with In max. $=1600 \mathrm{~A}$, with:

- Copper busbars 50/63/80/100 $\times 5 \times 1$ - Copper 80/100 $\times 5 \times 2$
- Busbar supports 3P-UC823 or 4P-UC824
- Fasteners for copper busbar 3P-UC822 or 4P-UC825

In rating of busbars: Copper $63 \times 5 \times 1(630$ A) - Copper $80 \times 5 \times 1$ (800 A) - Copper $100 \times 5 \times 1$ (1000 A) - Copper $80 \times 5 \times 2(1250$ A) Copper $100 \times 5 \times 2(1600 \mathrm{~A})$

The number of supports is determined according to the length of the copper busbars and the maximum distance calculated according to the IK.
(For other configurations, please contact us)

Incoming feeder connection busbar

Technical characteristics for selecting the busbars in the quatro+ units

The supports, ref. UC823/UC824, can hold 1 to 2 busbars per pole with a thickness of 5 or 10 mm , and can be mounted in units with a depth of 400,600 and 800 m on perforated crossbars.
In units with a depth of 400 mm , it is preferable to mount only a single busbar per pole.
In units with a depth of 600 or $800 \mathrm{~mm}, 1$ or 2 busbars can be mounted per pole, with the recommendations below:
For "transformer" distributions, P 800 kVA (1200 A) and 1000 kVA (1600 A), a unit with a depth of 800 mm will be selection if any of the following criteria apply:

- Unit installed against the wall (no rear access).
- A large number of cables for different outgoing feeders enter via the top behind the horizontal busbars positioned at the top of the unit
- Number of incoming feeder cables (> 3 cables/phase) requires the creation of an "incoming feeder" busbar.
- The use of a four-phase 1600 A moulded-case circuit breaker or 2000 A air circuit breaker.

The main distribution busbars: Horizontal and vertical mounting in quadro+ units

Transformer power rating (kVA)	Busbar In (A)	Copper busbar (perforated)	Busbar supports	Unit depth (mm)	Notes
315 (455 A)	540	$50 \times 5 \times 1$	UC823 UC824 and UC822 UC825	400	
400 (577 A)	650	$63 \times 5 \times 1$		400	
500 (722 A)	800	$80 \times 5 \times 1$		400	
630 (909 A)	950	$100 \times 5 \times 1$		600	
800 (1155 A)	1400	$80 \times 5 \times 2$		600	With rear access to units
800 (1155 A)	1400	$80 \times 5 \times 2$		800	Units installed directly against the wall
1000 (1443 A)	1700	$100 \times 5 \times 2$		600	With rear access to units
1000 (1443 A)	1700	$100 \times 5 \times 2$		800	Units installed directly against the wall

The values in the table above are calculated for the use of perforated copper busbars:

- With ambient temperature of $35^{\circ} \mathrm{C}$.
- With internal temperature of $45^{\circ} \mathrm{C}$.
- With maximum busbar temperature of $80^{\circ} \mathrm{C}$.
- In a IP54 enclosure.

The busbars for connecting the "incoming feeder": Horizontal mounting in quadro+ units

Transformer power rating (kVA)	Copper busbar (solid)	Busbar In (A)	Copper busbar (perforated)	Busbar $\ln (A)$	Busbar support	Cover height	Unit depth (mm)	Notes
315 (455 A)	$50 \times 5 \times 1$	600	$50 \times 5 \times 1$	540	UC823 UC824 and UC822 UC825	300	400	Direct connection to moulded-case terminal pads
400 (577 A)	$63 \times 5 \times 1$	700	$63 \times 5 \times 1$	650		300	400	
	$40 \times 10 \times 1$							
500 (722 A)	$80 \times 5 \times 1$	850	$80 \times 5 \times 1$	800		300	400	
	$50 \times 10 \times 1$							
630 (909 A)	$100 \times 5 \times 1$	1050	$100 \times 5 \times 1$	950		400	600	On busbar
	$63 \times 10 \times 1$							
800 (1155 A)	$80 \times 10 \times 1$	1300				400	600	With rear access to units
800 (1155 A)	$80 \times 10 \times 1$	1300				600	800	Units installed directly against the wall
1000 (1443 A)	$100 \times 10 \times 1$	1550				600	600	With rear access to units
1000 (1443 A)	$100 \times 10 \times 1$	1550				600	800	Units installed directly against the wall

The values in the tables above are calculated for the use of perforated or solid copper busbars:

- With ambient temperature of $35^{\circ} \mathrm{C}$.
- With internal temperature of $45^{\circ} \mathrm{C}$.
- With maximum busbar temperature of $80^{\circ} \mathrm{C}$
- In a IP54 enclosure.

General electrical distribution

For selecting products: Enclosures, moulded-case protective devices and modular circuit breakers, busbars, control and information devices, etc. see the various catalogue selection guides.

Terminology

Some general terms used in specifications
HV network: HVa high voltage $1 \mathrm{kV}<\mathrm{U}<50 \mathrm{kV}$, HVb high voltage $\mathrm{U}>50 \mathrm{kV}$.
Delivery substation (private): HV/HV or HV/LV delivery substation located within a private building that complies with standards NF C 13-100 and NF C 13-200.
Source, power of the source: Source and power rating of the power supply to the electrical installation (HVa/LV transformer or turbo generator).
Role of electrical boards: They are vital core in the installation, involved in the distribution of electrical energy and the protection circuits, individuals and property, as well as monitoring and controlling the installation.
LV system layout: Tree diagram of the various boards, geographically distributed according to the architectural configuration of the buildings and the source of the electrical installation
Metering method: LV metering for a delivery substation with 1 transformer, HV metering if multiple $\mathrm{HVa} / \mathrm{LV}$ transformers. LV, LV distribution, LV system: LVa low voltage $50 \mathrm{~V}<\mathrm{U}<500 \mathrm{~V}$, LVb low voltage $500 \mathrm{~V}<\mathrm{U}<1000 \mathrm{~V}$.
LV boards: Distribution cabinets and boxes in the electrical installation. LV boards control the electrical energy for the entire installation. LVMDB: Low-voltage main distribution board.
TRB: Transformer board (protection and LV switching) in the event the LVMDB is not located in the transformer substation room.
Enclosure: A sealed unit and the general terms for cabinets and boxes.
Electrical cabinet: Enclosure or sealed unit designed to be placed on the group. It contains and protects the electrical equipment.
Electrical box: Enclosure or sealed unit attached to a wall.
Earthing system: (Older term: neutral point treatment), TT, IT, TN (TNC/TNS).
Front- and rear-access cabinet: A cabinet in which the electrical equipment can also be accessed from the rear. This is important for devices that connect to rear terminals. Installation and maintenance of the cabinet are made easier with front and rear access.
Rear access space: Space reserved behind the entire length of the cabinet. This space must allow all technical interventions behind the cabinet to be carried out. Front and rear access to electrical boards and the type of connection are determined by the design of the rooms and the space reserved for the electrical equipment.
Against wall: For distribution boards with connections via the front; for LVMDBs (In > 800 A in incoming feeder), "against wall" installations are not advised due to issues relating to access (maintenance) and installation of equipment.
Cable channel: A space in the floor reserved for the wiring for elec trical boards. The LVMDB is generally installed above the channel
Board layout: Electrical boards are subdivided into areas. The areas can be partitioned or not partitioned. The areas increase safety and ensuring that the equipment works properly. The areas are as follows: power connection area, feeder equipment area, measurement area, busbar area, outgoing circuit breaker area, modular device and fina circuit areas, ELV area, low current area and terminals area.
Main LV circuit breaker: Main circuit breaker downstream of the $\mathrm{HVa} / \mathrm{LV}$ transformer
Mounted device: Device that can be removed from the system using a tool.
Front-mounted device: Front terminal connection.
Rear-mounted device: Rear terminal connection.
Removable device: The device can be moved manually from the rear to the front to a set position corresponding to the disconnection distance between its upstream and downstream connection terminals. According to the weight and size of the device, it can be removed from either a socket or the frame.
Disconnectable device: The upstream terminals of the device can be removed. The downstream terminal connections are fixed.
Draw-out circuit breaker: Circuit breaker combined with a special
cradle that allows the device to be racked in and racked out. This combination meets the requirements of Article 571 of NF C 13-100 (disconnector with visible break). It is fitted with a key locking device that complies with Article 462 of NF C 13-100.
These provisions are intended to ensure to safety of individuals working on the HV part. The aim is to avoid voltage returning to the LV system.
Disconnector with visible break: Switch-disconnector with visible break combined with a front- or rear-mounted moulded-case circuit breaker providing the visible break and overload protector (LV transformer) required in Article 571 of NF C 13-100. A key locking device is fitted to the disconnector with visible break.
Manual and automatic changeover switches: Allows switching between two sources. E.g.: Switching of emergency circuits from the "normal system" position to the "emergency generator" position, and vice versa.
Coupling switch: Allows switching or coupling of two LV circuits as well as their disconnection for safety (e.g. coupling 2 transformers operating in parallel or independently).
Feeder busbars: Smaller busbars mounted on the incoming feeder pads of the main device (circuit breaker or switch). The feeder busbars enable and increase the number of connection points for feeder equipment supply terminals (e.g. connection of 3 or 5 single-core cables per phase).
Main busbar: Busbar powered directly via the main circuit breaker. At its source, it has the current measurement transformers. The arrangement of the main busbar is often vertical or horizontal. Connector: The horizontal busbar is interrupted where the units meet. They are transported individually or in pairs. The connectors (pieces of copper) allow the busbars to be connected when assembling the units at the site.
Insulated flexible bars or insulated copper strips: Insulated flat, flexible copper conductor used for certain electrical connections in cabinets. These flexible bars are more easily installed than bare rigid copper bars, which require prior work done on them.

Selection of ducts by material

	PVC	Aluminium	Steel	PC-ABS	Polyester	PPO						
Distribution ducts	FB, lifea		LFS	LFH	LFG							
Installation ducts with direct device clip-in, 45×45	queraz PVC	queraz aluminium					年					
:---	:---	:---	:---	:---								
Installation ducts with device installation	lifea, BR	BRA	BRS									
Moulding with device installation	ateha											
Skirting boards with device installation	SL											
Fire-resistant ducts												
Columns and mini-columns		FWK										
Cable ducts	BA7A, DNG											

PVC

Impact resistance: Equivalent to IK7
Flame retardant M1
(doe not easily catch fire)
UL94 rating V0
Service temperature range $-5^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.

PPO

Contains no halogens
UL94 rating V1
Service temperature range $-25^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$.

Aluminium

Naturally anodised

PC-ABS

Good impact resistance ($14 \mathrm{kj} / \mathrm{mm}^{2}$)
Contains no halogens
UL94 rating V0
Service temperature range $-30^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$.

Polyester

Good impact resistance ($70 \mathrm{kj} / \mathrm{mm}^{2}$)
Contains no halogens
UL94 rating V0
Service temperature range $-80^{\circ} \mathrm{C}$ to $+130^{\circ} \mathrm{C}$.

Galvanised steel

Zinc coating on both sides
Can be coated in any RAL colour

Selection of ducts by type of device

Hager	systo kallysta essensya		Moulding	Skirting boards SKE	Ducts with installation SKE	vice SKE	Ducts and clip-in S	olumns with \|S	rect device S
			ateha	SL	LFF	BR/BRA/BRS	queraz PVC	queraz aluminium	topaz
Tehalit	zenith	Socket unit							
		RJ cable socket							
Legrand		Surface-mounted devices							
		Céliane							
		Neptune							
	Mosaïc	Standard mechanism							
		DLP							
		RJ-45 socket							
		ACO socket			except depth of 40	except depth of 50			
Arnould		Profil ${ }^{2}$							
	Espace Liberté	45×45 mechanism							
		Special duct socket							
		Espace							
		Initia							
Alombard		Alréa							
		Alvaïs							
		Alcyon							
		Altira							

Diameter and cross-section of high- and low-voltage cables and wires

		Approx. external Ø in mm
Wire: H 07 V	Cross-section in mm²	
1.5	2.8	6.2
2.5	3.4	9.1
4	3.9	11.9
6	4.7	17.3
Telephone cable - STY1		
1 pair	3.8	11.3
2 pairs	4.9	18.9
3 pairs	5.2	21.2
4 pairs	5.7	25.5
5 pairs	6.1	29.2
Data cable - Cat 5		
FTP 100 V 4 pairs	6.0	28.3
L120 120 V 4 pairs	8×5	40.0
L120 120 V 8 pairs	10.5×8	84.0
Television cable		
Coax 75 V	7.0	38.5

	Approx. external Ø in mm	Cross-section in $\mathbf{m m}^{2}$
Cable U1000R02V - H07RNF		
2×1.5	8.4	55.4
2×2.5	9.6	72.4
2×4	10.5	86.6
2×6	11.8	109.4
3×1.5	8.8	60.8
3×2.5	10.0	78.5
3×4	11.0	95.0
3×6	12.9	130.7
4×1.5	9.6	72.4
4×2.5	11.0	95.0
4×4	12.2	116.9
4×6	14.2	158.4
5×1.5	10.0	78.5
5×2.5	11.6	105.7
5×4	13.5	143.1
5×6	15.5	188.7

Installation advice

Mounting conduits

Drilling into plastics

Metal bits, lip and spur bits and cylindrical and conical bits that are widely available in shops can be used for drilling. Do not use a centre punch for the hole.
Any burr that appears when sawing and drilling can be removed with a knife, razor scraper or a file.

- Mounting

Use $4 \times 40 \mathrm{~mm}$ screws, combined with suitable washers and plugs that are widely available in shops.

- Intervals between screws

Standard length conduits are mounted attached at at least four points with a pair of screws. On PVC conduits, the intervals between screws must be no longer than 0.66 mm .

- Gluing hard PVC

The surfaces must be clean, degreased and dry.
The PVC should be cleaned using solvents recommended by the glue manufacturer, e.g. dichloromethane or common solvents available in shops.
Clean metal surfaces using trichloroethylene or white spirit. Sand using coarse emery paper to increase the surface area and increase the adhesive strength of the glue. We especially recommend roughening up metal and wood surfaces that are to be glued.

Cutting to length

- Plastic conduits

To cut plastic conduits to length, it is recommended tat you use a finetoothed saw (hacksaw or jigsaw). If the cutting must be done using a machine, use a circular saw fitted with a blade for cutting plastics with a diameter of between 250 and 350 mm (number of teeth: between 80 and 108, alternate top bevel, rotation speed 2800 rpm, approx $37-51 \mathrm{~m} / \mathrm{s}$).

- Polyester conduits reinforced with fibreglass

Use a diamond blade for a circular saw or jigsaw.
Sawing by hand: Bow saw with blade for cutting metals.

- Aluminium conduits

Cut using a circular saw with a blade with 96 to 108 carbide-tipped teeth with a diameter of between 250 and 350 mm .
Rotation speed: 2800 rpm.
Cutting speed: 37-51 m/s.

- Sheet steel conduits

Machine sawing:
Bandsaw: Blade 0.9 mm thick, carbide, 24 TPI.
Cutting speed: $60 \mathrm{~m} / \mathrm{min}$.
Reciprocating saw, Ackermann u. Schmitt brand, model ZS 110, $500 \mathrm{~W}, 1.7 \mathrm{~kg}, 10,000$ strokes/min.
Jigsaw with blade for cutting metals.
Sawing by hand: Hacksaw.

PVC (BA7A/DNG)

Mechanical properties

Tensile strength: $30 \mathrm{~N} / \mathrm{mm}^{2}$
Impact resistance: $4 \mathrm{kj} / \mathrm{mm}^{2}$
Termite resistant (Entomology laboratory Rap BFA 132/68)

Electrical properties

Specific resistivity: > $10^{17} \Omega / \mathrm{cm}$
Surface resistivity: $>10^{11} \Omega$
Dielectric strength: $>35 \mathrm{kV} / \mathrm{mm}$
Dielectric constant: ~ 2.7

Thermal properties

Service temperature range: $-5^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
Coefficient of thermal expansion: $71 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ (equal to expansion of 2.1 mm per metre from a difference of $30^{\circ} \mathrm{C}$)

Behaviour when exposed to fire

Reaction to fire classification: M1 (Laboratory LCPP PV N ${ }^{\circ}$ 1382/99) UL94 rating: V0 (Laboratory LCIE PV № 284598C)

PC ABS (HA7)

Mechanical properties
Impact resistance: $14 \mathrm{kj} / \mathrm{mm}^{2}$
Tensile strength at break: 64 Mpa (ISO 527)

Electrical properties

Surface resistivity: > $10^{15} \Omega$
Dielectric strength: $>21 \mathrm{kV} / \mathrm{mm}$
Dielectric constant: ~ 2.7

Thermal properties

Service temperature range: $-30^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$
Coefficient of thermal expansion: $1 \times 10^{-4} /{ }^{\circ} \mathrm{C}$ (equal to expansion of 3 mm per metre from a difference of $30^{\circ} \mathrm{C}$)

Behaviour when exposed to fire

Contains no halogens
Reaction to fire classification: M1
UL94 rating: Vo

Fibreglass reinforced polyester (FRP)

Mechanical properties

Impact resistance: $70 \mathrm{kj} / \mathrm{mm}^{2}$
Tensile strength: (ISO R 727) $22 \mathrm{~N} / \mathrm{mm}^{2}$
Modulus of elasticity: (ISO R 727) $8400 \mathrm{~N} / \mathrm{mm}^{2}$

Electrical properties

Surface resistivity: $2 \times 10^{14} \Omega$
Dielectric strength: $6.5 \mathrm{kV} / \mathrm{mm}$

Thermal properties

Service temperature range: $-80^{\circ} \mathrm{C}$ to $+130^{\circ} \mathrm{C}$
Coefficient of thermal expansion: $40 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ (equal to expansion of 1.2 mm per metre from a difference of $30^{\circ} \mathrm{C}$)

Behaviour when exposed to fire

Contains no halogens
Does not propagate fire according to BS 476 part 7: Class 2
UL94 rating: V0

PPO

Electrical properties

Specific resistivity: $>10^{17} \Omega / \mathrm{cm}$
Surface resistivity: $>10^{11} \Omega$
Dielectric strength: $>35 \mathrm{kV} / \mathrm{mm}$
Dielectric constant: ~ 2.7

Thermal properties

Service temperature range: $-25^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$
Coefficient of thermal expansion: $59 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ (equal to expansion of 1.77 mm per metre from a difference of $30^{\circ} \mathrm{C}$)

Behaviour when exposed to fire

Contains no halogens
UL94 rating: V1

Regulatory approvals and certifications Cable ducts

BA7A, DNG

CSA no. 184n 90; Reg. no. 22009 (DNG, VK flex)
UL no. E48414
EN 50085, UL no. 48414, CSA no. 22009, UL 94V0

HA7
EN 50085, UL no. 48414, UL 94V0

Ateha, moulding

France:

NFC 68-104 (except ATA 20752, ATA 6300: NFC 68-102)
Equivalent to IK7 IP40
Others:
EZU, MEEI, EVPU, SEP-BBJ

SL, skirting boards

France:
NFC 68-104
Equivalent to IK7

Others:

VDE 00604/3, ÖVE, KEMA, EZU, MEEI, EVPU, SEP-BBJ

LF, Lifea, distribution ducts
France:
NFC 68-102
Equivalent to IK7
Others:
VDE 00604/1, ÖVE, SEV, SEMKO, KEMA, NEMKO, EZU, MEEI, EVPU, SEP-BBJ

FB, distribution ducts

France:
NFC 68-102
Equivalent to IK7

Others:

VDE 00604/2, ÖVE, SEV, SEMKO, KEMA, NEMKO, EZU, MEEI, EVPU, SEP-BBJ

GBD, ducts with direct device clip-in

France:
NFC 68-102

BR, distribution ducts

France:
NFC 68-102
Equivalent to IK7

Others:

VDE 00604/2, ÖVE, SEMKO, KEMA, EZU, MEEI, EVPU, SEP-BBJ

BA7A, DNG, cable ducts
CSA no. 184n 90; Reg. no. 22009 (DNG, VK flex)
UL no. E48414
EN 50085, UL no. 48414, CSA no. 22009, UL 94V0

HA7

EN 50085, UL no. 48414, UL 94V0

FWK

Fire-resistant electrical distribution duct system

FWK 30

Fire resistance: I 90
Certified according to DIN 4102/11
The FWK 30 ducts comply with this standard, with fire resistance within the ducts for a minimum of 90 minutes

FWK 90

Fire resistance: I 120 and E
Certified according to DIN 4102/11 and DIN 4102/12.
The FWK 90 ducts comply with standard DIN 4102/11 (class I), guaranteeing fire resistance within the ducts for a minimum of 120 minutes.

The FWK 90 ducts comply with standard DIN 4102/12 (class E), guaranteeing fire resistance outside of the ducts, remaining operational, for a minimum of 60 or 80 minutes (according to the duct) if the duct is mounted directly on a wall or ceiling, or 30 minutes if mounted on tables (in cable trays).

DIN 4102/11

The class I test for DIN 4102/11 determines the duration for which the duct prevents the escape of flames and hot or inflammable gases when a fire occurs within the duct. For this duration, the outer surface shall not exceed $140^{\circ} \mathrm{C}$ on average or $180^{\circ} \mathrm{C}$ at any given point.

DIN 4102/12

The class E test for DIN 4102/12 determines the minimum duration for which the duct will allow the electrical conductors within to continue to operate when a fire occurs outside of the duct.

The products listed below have obtained NF or EN approval.
When this symbol has been placed on a product, it certifies that it has successfully undergone mechanical and electrical tests, guaranteeing optimal performance and reliability.

| Miniature circuit breakers |
| :---: | :---: | :---: | :---: | :---: |
| MHN - 4500 A EN 60 898-1 | MW225 | MU210A | MC103A | NGN201 |
| MHN706 | MW232 | MU216A | MC104A | NGN202 |
| MHN710 | MW240 | MU220A | MC106A | NGN203 |
| MHN716 | | MU225A | MC110A | NGN204 |
| MHN720 | MW306 | MU232A | MC116A | NGN206 |
| MHN725 | MW310 | MU240A | MC120A | NGN210 |
| MHN732 | MW316 | MU250A | MC125A | NGN216 |
| MHN740 | MW320 | MU263A | MC132A | NGN220 |
| | MW325 | | MC140A | NGN225 |
| MJN-4500 A EN 60 898-1 | MW332 | MU306A | MC150A | NGN232 |
| MJN702 | MW340 | MU310A | MC163A | NGN240 |
| MJN706 | | MU316A | | NGN250 |
| MJN710 | MW406 | MU320A | MC200A | NGN263 |
| MJN716 | MW410 | MU325A | MC201A | |
| MJN720 | MW416 | MU332A | MC202A | NGN300 |
| MJN725 | MW420 | MU340A | MC203A | NGN301 |
| MJN732 | MW425 | MU350A | MC204A | NGN302 |
| MJN740 | MW432 | MU363A | MC206A | NGN303 |
| | MW440 | | MC210A | NGN304 |
| MLN-6000 A EN 60 898-1 | | MU406A | MC216A | NGN306 |
| MLN702 | MT-6000 A EN 60 898-1 | MU410A | MC220A | NGN310 |
| MLN706 | MT106A | MU416A | MC225A | NGN316 |
| MLN710 | MT110A | MU420A | MC232A | NGN320 |
| MLN716 | MT116A | MU425A | MC240A | NGN325 |
| MLN720 | MT120A | MU432A | MC250A | NGN332 |
| MLN725 | MT125A | MU440A | MC263A | NGN340 |
| MLN732 | MT132A | MU450A | | NGN350 |
| | MT140A | MU463A | MC300A | NGN363 |
| MV-3000 A EN 60 898-1 | MT150A | | MC301A | |
| MV106 | MT163A | MB - 6000 A EN 60 898-1 | MC302A | NGN400 |
| MV110 | | MB106A | MC303A | NGN401 |
| MV116 | MT206A | MB110A | MC304A | NGN402 |
| MV120 | MT210A | MB116A | MC306A | NGN403 |
| MV125 | MT216A | MB120A | MC310A | NGN404 |
| MV132 | MT220A | MB125A | MC316A | NGN406 |
| MV140 | MT225A | MB132A | MC320A | NGN410 |
| | MT232A | MB140A | MC325A | NGN416 |
| MV206 | MT240A | MB150A | MC332A | NGN420 |
| MV210 | MT250A | MB163A | MC340A | NGN425 |
| MV216 | MT263A | | MC350A | NGN432 |
| MV220 | | MB206A | MC363A | NGN440 |
| MV225 | MT306A | MB210A | | NGN450 |
| MV232 | MT310A | MB216A | MC400A | NGN463 |
| MV240 | MT316A | MB220A | MC401A | |
| | MT320A | MB225A | MC402A | NBN - 10000 A EN 60 898-1 |
| MV306 | MT325A | MB232A | MC403A | NBN106A |
| MV310 | MT332A | MB240A | MC404A | NBN110A |
| MV316 | MT340A | MB250A | MC406A | NBN116A |
| MV320 | MT350A | MB263A | MC410A | NBN120A |
| MV325 | MT363A | | MC416A | NBN125A |
| MV332 | | MB306A | MC420A | NBN132A |
| MV340 | MT406A | MB310A | MC425A | NBN140A |
| | MT410A | MB316A | MC432A | NBN150A |
| MV406 | MT416A | MB320A | MC440A | NBN163A |
| MV410 | MT420A | MB325A | MC450A | |
| MV416 | MT425A | MB332A | MC463A | NBN206A |
| MV420 | MT432A | MB340A | | NBN210A |
| MV425 | MT440A | MB350A | NGN-10000 A EN 60 898-1 | NBN216A |
| MV432 | MT450A | MB363A | NGN100 | NBN220A |
| MV440 | MT463A | | NGN101 | NBN225A |
| | | MB406A | NGN102 | NBN232A |
| MW-3000 A EN 60 898-1 | MU-6000 A EN 60 898-1 | MB410A | NGN103 | NBN240A |
| MW106 | | MB416A | NGN104 | NBN250A |
| MW110 | MU106A | MB420A | NGN106 | NBN263A |
| MW116 | MU110A | MB425A | NGN110 | |
| MW120 | MU116A | MB432A | NGN116 | NBN306A |
| MW125 | MU120A | MB440A | NGN120 | NBN310A |
| MW132 | MU125A | MB450A | NGN125 | NBN316A |
| MW140 | MU132A | MB463A | NGN132 | NBN320A |
| | MU140A | | NGN140 | NBN325A |
| MW206 | MU150A | MC - 6000 A EN 60 898-1 | NGN150 | NBN332A |
| MW210 | MU163A | MC100A | NGN163 | NBN340A |
| MW216 | | MC101A | | NBN350A |
| MW220 | MU206A | MC102A | NGN200 | NBN363A |

Miniature circuit breakers	Miniature circuit breakers	Miniature circuit breakers	Miniature circuit breakers	Ph/N RCCBs
NBN406A	NDN110A	HLF299S	HMK - 30000 A EN 60 898-1	AE - 6000 A EN 61 009-1
NBN410A	NDN116A		HMJ180	AE106Z
NBN416A	NDN120A	HLF380S	HMK180	AE110Z
NBN420A	NDN125A	HLF390S	HMK190	AE116Z
NBN425A	NDN132A	HLF399S	HMK199	AE120Z
NBN432A	NDN140A			AE125Z
NBN440A	NDN150A	HLF480S	HMK280	AE132Z
NBN450A	NDN163A	HLF490S	HMK290	AE140Z
NBN463A		HLF499S	HMK299	AE150Z
	NDN200A			AE163Z
NCN - 10000 A EN $60898-1$	NDN201A	HMB - 15000 A EN 60 898-1	HMK380	
NCN100A	NDN202A	HMB180	HMK390	AF - 6000 A EN 61 009-1
NCN101A	NDN203A	HMB190	HMK399	AF106Z
NCN102A	NDN204A	HMB199		AF110Z
NCN103A	NDN206A		HMK480	AF116Z
NCN104A	NDN210A	HMB280	HMK490	AF120Z
NCN106A	NDN216A	HMB290	HMK499	AF125Z
NCN110A	NDN220A	HMB299		AF132Z
NCN116A	NDN225A		HMX - 50000 A EN 60 898-1	AF140Z
NCN120A	NDN232A	HMB380	HMX110	AF145Z
NCN125A	NDN240A	HMB390	HMX116	
NCN132A	NDN250A	HMB399	HMX120	ADB - 10000 A EN 61 009-1
NCN140A	NDN263A		HMX125	ADB106
NCN150A		HMB480	HMX132	ADB110
NCN163A	NDN300A	HMB490	HMX140	ADB116
	NDN301A	HMB499	HMX150	ADB120
NCN200A	NDN302A		HMX163	ADB125
NCN201A	NDN303A	HMC - 15000 A EN $60898-1$		ADB132
NCN202A	NDN304A	HMC180	HMX210	ADB140
NCN203A	NDN306A	HMC190	HMX216	ADB150
NCN204A	NDN310A	HMC199	HMX220	
NCN206A	NDN316A		HMX225	ADC - 10000 A EN 61 009-1
NCN210A	NDN320A	HMC280	HMX232	ADC106
NCN216A	NDN325A	HMC290	HMX240	ADC110
NCN220A	NDN332A	HMC299	HMX250	ADC116
NCN225A	NDN340A		HMX263	ADC120
NCN232A	NDN350A	HMC380		ADC125
NCN240A	NDN363A	HMC390	HMX310	ADC132
NCN250A		HMC399	HMX316	ADC140
NCN263A	NDN400A		HMX320	ADC150
	NDN401A	HMC480	HMX325	
NCN300A	NDN402A	HMC490	HMX332	AEC - 10000 A EN 61 009-1
NCN301A	NDN403A	HMC499	HMX340	AEC106
NCN302A	NDN404A		HMX350	AEC110
NCN303A	NDN406A	HMD - 15000 A EN 60 898-1	HMX363	AEC116
NCN304A	NDN410A	HMD180		AEC120
NCN306A	NDN416A	HMD190	HMX410	AEC125
NCN310A	NDN420A	HMD199	HMX416	AEC132
NCN316A	NDN425A		HMX420	AEC140
NCN320A	NDN432A	HMD280	HMX425	
NCN325A	NDN440A	HMD290	HMX432	ADA -10000 A EN 61 009-1
NCN332A	NDN450A	HMD299	HMX440	ADA156U
NCN340A	NDN463A		HMX450	ADA160U
NCN350A		HMD380	HMX463	ADA166U
NCN363A	HLE-10000 A EN 60 898-1	HMD390		ADA170U
	HLE180S	HMD399	Ph/N RCCBs	ADA175U
NCN400A	HLE190S			ADA182U
NCN401A	HLE199S	HMD480	AD-6000 A EN 61 009-1	
NCN402A		HMD490	AD104	AD - 4500 A EN 61 009-1
NCN403A	HLE280S	HMD499	AD105	AD806J
NCN404A	HLE290S		AD107	AD810J
NCN406A	HLE299S	HMJ - 30000 A EN 60 898-1	AD108	AD816J
NCN410A		HMJ180	AD109	AD820J
NCN416A	HLE380S	HMJ190	AD110	AD825J
NCN420A	HLE390S	HMJ199	AD111	AD832J
NCN425A	HLE399S		AD113	AD840J
NCN432A		HMJ280		
NCN440A	HLE480S	HMJ290	AD119	AD856J
NCN450A	HLE490S	HMJ299	AD120	AD860J
NCN463A	HLE499S		AD121	AD866J
		HMJ380	AD122	AD870J
NDN - 10000 A EN $60898-1$	HLF - 10000 A EN 60 898-1	HMJ390	AD123	AD875J
NDN100A	HLF180S	HMJ399	AD124	AD882J
NDN101A	HLF190S		AD125	AD890J
NDN102A	HLF199S	HMJ480	AD126	
NDN103A		HMJ490	AD128	AD - 6000 A EN 60 009-1
NDN104A	HLF280S	HMJ499		AD906B
NDN106A	HLF290S			AD910B

Hager Electro S.A.S.
132, boulevard d'Europe
B.P. 3

67215 Obernai cedex
France

Tél: +33 (0)3 88495050 Fax: +33 (0)3 88495144 www.near-east.hager.com www.africa.hager.com

[^0]: L max. $(99 \mathrm{~m})>\mathrm{L}$ circuit $(90 \mathrm{~m}) \rightarrow$ protection against indirect contact is provided

